These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28641198)

  • 1. Combined computational-experimental approach to predict blood-brain barrier (BBB) permeation based on "green" salting-out thin layer chromatography supported by simple molecular descriptors.
    Ciura K; Belka M; Kawczak P; Bączek T; Markuszewski MJ; Nowakowska J
    J Pharm Biomed Anal; 2017 Sep; 143():214-221. PubMed ID: 28641198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of salting-out thin layer chromatography in computational prediction of minimum inhibitory concentration and blood-brain barrier penetration of some selected fluoroquinolones.
    Rageh AH; Atia NN; Abdel-Rahman HM
    J Pharm Biomed Anal; 2018 Sep; 159():363-373. PubMed ID: 30056224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-retention relationship of new N-substituted 2-alkylidene-4-oxothiazolidines.
    Dabić D; Natić M; Džambaski Z; Marković R; Milojković-Opsenica D; Tešić Ž
    J Sep Sci; 2011 Sep; 34(18):2397-404. PubMed ID: 21735548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipophilicity study of different cephalosporins: Computational prediction of minimum inhibitory concentration using salting-out chromatography.
    AboulMagd AM; Abdelwahab NS; Abdelrahman MM; Abdel-Rahman HM; Farid NF
    J Pharm Biomed Anal; 2021 Nov; 206():114358. PubMed ID: 34534866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new descriptor via bio-mimetic chromatography and modeling for the blood brain barrier (Part II).
    Kouskoura MG; Piteni AI; Markopoulou CK
    J Pharm Biomed Anal; 2019 Feb; 164():808-817. PubMed ID: 29884296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversed- and normal-phase liquid chromatography in quantitative structure retention-property relationships of newly synthesized seco-androstene derivatives.
    Milošević NP; Stojanović SZ; Penov-Gaši K; Perišić-Janjić N; Kaliszan R
    J Pharm Biomed Anal; 2014 Jan; 88():636-42. PubMed ID: 24216283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the Blood-Brain Barrier Permeability of New Drug-Like Compounds via HPLC with Various Stationary Phases.
    Janicka M; Sztanke M; Sztanke K
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31979316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer Assisted Models for Blood Brain Barrier Permeation of 1, 5-Benzodiazepines.
    Dhavale RP; Choudhari PB; Bhatia MS
    Curr Comput Aided Drug Des; 2021; 17(2):187-200. PubMed ID: 32003700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).
    Bujak R; Struck-Lewicka W; Kaliszan M; Kaliszan R; Markuszewski MJ
    J Pharm Biomed Anal; 2015 Apr; 108():29-37. PubMed ID: 25703237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques.
    Qin LT; Liu SS; Liu HL; Tong J
    J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced QSRR modeling of peptides behavior in RPLC.
    Bodzioch K; Durand A; Kaliszan R; Baczek T; Vander Heyden Y
    Talanta; 2010 Jun; 81(4-5):1711-8. PubMed ID: 20441962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs.
    Grumetto L; Russo G; Barbato F
    Mol Pharm; 2016 Aug; 13(8):2808-16. PubMed ID: 27377191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of biopartitioning micellar chromatography as an in vitro technique for predicting drug penetration across the blood-brain barrier.
    Escuder-Gilabert L; Molero-Monfort M; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Aug; 807(2):193-201. PubMed ID: 15203029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography.
    Talebi M; Schuster G; Shellie RA; Szucs R; Haddad PR
    J Chromatogr A; 2015 Dec; 1424():69-76. PubMed ID: 26592563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine.
    Golmohammadi H; Dashtbozorgi Z; Acree WE
    Eur J Pharm Sci; 2012 Sep; 47(2):421-9. PubMed ID: 22771548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling.
    Luco JM
    J Chem Inf Comput Sci; 1999; 39(2):396-404. PubMed ID: 10192950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography.
    Liu T; Nicholls IA; Öberg T
    Anal Chim Acta; 2011 Sep; 702(1):37-44. PubMed ID: 21819857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.