BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28641232)

  • 1. On the aquatic toxicity of substituted phenols to Chlorella vulgaris: QSTR with an extended novel data set and interspecies models.
    Tugcu G; Ertürk MD; Saçan MT
    J Hazard Mater; 2017 Oct; 339():122-130. PubMed ID: 28641232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines.
    Tugcu G; Saçan MT
    J Hazard Mater; 2018 Feb; 344():893-901. PubMed ID: 29190587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment and modeling of the novel toxicity data set of phenols to Chlorella vulgaris.
    Ertürk MD; Saçan MT
    Ecotoxicol Environ Saf; 2013 Apr; 90():61-8. PubMed ID: 23332417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple toxicity endpoint-structure relationships for substituted phenols and anilines.
    Yan F; Liu T; Jia Q; Wang Q
    Sci Total Environ; 2019 May; 663():560-567. PubMed ID: 30726764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.
    Abbasitabar F; Zare-Shahabadi V
    Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to QSAR modelling of acute toxicity.
    Lagunin AA; Zakharov AV; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2007; 18(3-4):285-98. PubMed ID: 17514571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance of descriptors in a multiple linear and Kriging models: a case study on the acute toxicity of organic chemicals to algae.
    Tugcu G; Yilmaz HB; Saçan MT
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11924-32. PubMed ID: 24946708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods.
    Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata.
    Ding G; Li X; Zhang F; Chen J; Huang L; Qiao X
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):520-4. PubMed ID: 19582361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols.
    Furuhama A; Hasunuma K; Aoki Y
    SAR QSAR Environ Res; 2015; 26(4):301-23. PubMed ID: 25887636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris.
    Zhu M; Ge F; Zhu R; Wang X; Zheng X
    Chemosphere; 2010 Jun; 80(1):46-52. PubMed ID: 20417544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca.
    Mitchell RJ; Myers AL; Mabury SA; Solomon KR; Sibley PK
    Ecotoxicol Environ Saf; 2011 Nov; 74(8):2260-7. PubMed ID: 21872332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSTR with extended topochemical atom (ETA) indices. 9. Comparative QSAR for the toxicity of diverse functional organic compounds to Chlorella vulgaris using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2007 Nov; 70(1):1-12. PubMed ID: 17765287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.
    Geiger E; Hornek-Gausterer R; Saçan MT
    Ecotoxicol Environ Saf; 2016 Jul; 129():189-98. PubMed ID: 27045919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs.
    Aruoja V; Sihtmäe M; Dubourguier HC; Kahru A
    Chemosphere; 2011 Sep; 84(10):1310-20. PubMed ID: 21664645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database.
    Dieguez-Santana K; Pham-The H; Villegas-Aguilar PJ; Le-Thi-Thu H; Castillo-Garit JA; Casañola-Martin GM
    Chemosphere; 2016 Dec; 165():434-441. PubMed ID: 27668720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches.
    Hossain KA; Roy K
    Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress.
    Gao QT; Tam NF
    Chemosphere; 2011 Jan; 82(3):346-54. PubMed ID: 21035163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure-activity relationship models.
    Tong L; Guo L; Lv X; Li Y
    J Mol Graph Model; 2017 Jan; 71():1-12. PubMed ID: 27825025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.