BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 28641239)

  • 1. Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks.
    Zhao Y; Dong Q; Zhang S; Zhang W; Chen H; Jiang X; Guo L; Hu X; Han J; Liu T
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1975-1984. PubMed ID: 28641239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
    Zhao Y; Dong Q; Chen H; Iraji A; Li Y; Makkie M; Kou Z; Liu T
    Med Image Anal; 2017 Dec; 42():200-211. PubMed ID: 28843214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
    Dong Q; Ge F; Ning Q; Zhao Y; Lv J; Huang H; Yuan J; Jiang X; Shen D; Liu T
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1739-1748. PubMed ID: 31647417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network.
    Cui Y; Zhao S; Wang H; Xie L; Chen Y; Han J; Guo L; Zhou F; Liu T
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2515-2525. PubMed ID: 30475739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.
    Jiang X; Li X; Lv J; Zhao S; Zhang S; Zhang W; Zhang T; Han J; Guo L; Liu T
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1183-1192. PubMed ID: 27608442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task fMRI data analysis based on supervised stochastic coordinate coding.
    Lv J; Lin B; Li Q; Zhang W; Zhao Y; Jiang X; Guo L; Han J; Hu X; Guo C; Ye J; Liu T
    Med Image Anal; 2017 May; 38():1-16. PubMed ID: 28242473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducibility of importance extraction methods in neural network based fMRI classification.
    Gotsopoulos A; Saarimäki H; Glerean E; Jääskeläinen IP; Sams M; Nummenmaa L; Lampinen J
    Neuroimage; 2018 Nov; 181():44-54. PubMed ID: 29964190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated iterative reclustering framework for determining hierarchical functional networks in resting state fMRI.
    Shams SM; Afshin-Pour B; Soltanian-Zadeh H; Hossein-Zadeh GA; Strother SC
    Hum Brain Mapp; 2015 Sep; 36(9):3303-22. PubMed ID: 26032457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.
    Gong J; Liu X; Liu T; Zhou J; Sun G; Tian J
    IEEE Trans Biomed Eng; 2018 May; 65(5):1035-1048. PubMed ID: 28796604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Task fMRI Data Via Deep Convolutional Autoencoder.
    Huang H; Hu X; Zhao Y; Makkie M; Dong Q; Zhao S; Guo L; Liu T
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1551-1561. PubMed ID: 28641247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.
    Li H; Fan Y
    Neuroimage; 2019 Nov; 202():116059. PubMed ID: 31362049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical multi-resolution mesh networks for brain decoding.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2018 Aug; 12(4):1067-1083. PubMed ID: 28980144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of fMRI-derived ROIs based on coherent functional interaction patterns.
    Deng F; Zhu D; Liu T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):214-22. PubMed ID: 23286133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multichannel 2D Convolutional Neural Network Model for Task-Evoked fMRI Data Classification.
    Hu J; Kuang Y; Liao B; Cao L; Dong S; Li P
    Comput Intell Neurosci; 2019; 2019():5065214. PubMed ID: 32082370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.