These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28641430)

  • 1. Water flow in carbon nanotubes: The effect of tube flexibility and thermostat.
    Sam A; Kannam SK; Hartkamp R; Sathian SP
    J Chem Phys; 2017 Jun; 146(23):234701. PubMed ID: 28641430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations.
    Heo S; Sinnott SB
    J Nanosci Nanotechnol; 2007; 7(4-5):1518-24. PubMed ID: 17450920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations.
    Basconi JE; Shirts MR
    J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids.
    Li Z; Xiong S; Sievers C; Hu Y; Fan Z; Wei N; Bao H; Chen S; Donadio D; Ala-Nissila T
    J Chem Phys; 2019 Dec; 151(23):234105. PubMed ID: 31864248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further cautionary tales on thermostatting in molecular dynamics: Energy equipartitioning and non-equilibrium processes in gas-phase simulations.
    Halonen R; Neefjes I; Reischl B
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics.
    Yong X; Zhang LT
    J Chem Phys; 2013 Feb; 138(8):084503. PubMed ID: 23464156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats.
    Mor A; Ziv G; Levy Y
    J Comput Chem; 2008 Sep; 29(12):1992-8. PubMed ID: 18366022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain.
    Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA
    J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water flow in carbon nanotubes: the role of tube chirality.
    Sam A; K VP; Sathian SP
    Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new and effective method for thermostatting confined fluids.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2014 Feb; 140(5):054502. PubMed ID: 24511947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.
    Page AJ; Isomoto T; Knaup JM; Irle S; Morokuma K
    J Chem Theory Comput; 2012 Nov; 8(11):4019-28. PubMed ID: 26605569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ergodic configurational thermostat using selective control of higher order temperatures.
    Patra PK; Bhattacharya B
    J Chem Phys; 2015 May; 142(19):194103. PubMed ID: 26001443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient stochastic thermostatting of path integral molecular dynamics.
    Ceriotti M; Parrinello M; Markland TE; Manolopoulos DE
    J Chem Phys; 2010 Sep; 133(12):124104. PubMed ID: 20886921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior of a simple dipolar fluid under shear flow in an electric field.
    McWhirter JL
    J Chem Phys; 2008 Jan; 128(3):034502. PubMed ID: 18205505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast-forward Langevin dynamics with momentum flips.
    Hijazi M; Wilkins DM; Ceriotti M
    J Chem Phys; 2018 May; 148(18):184109. PubMed ID: 29764135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostating highly confined fluids.
    Bernardi S; Todd BD; Searles DJ
    J Chem Phys; 2010 Jun; 132(24):244706. PubMed ID: 20590213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostat for nonequilibrium multiparticle-collision-dynamics simulations.
    Huang CC; Varghese A; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013310. PubMed ID: 25679742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galilean-invariant Nosé-Hoover-type thermostats.
    Pieprzyk S; Heyes DM; Maćkowiak S; Brańka AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033312. PubMed ID: 25871251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of different thermostat settings in the implicit solvent approach for nanoparticles through brush-decorated nanopores.
    Li CW; Merlitz H; Sommer JU
    Phys Rev E; 2024 Sep; 110(3-1):034503. PubMed ID: 39425399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergostatting and thermostatting at a fixed point.
    Hüffel H; Ilijić S
    Phys Rev E; 2016 Nov; 94(5-1):052115. PubMed ID: 27967053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.