BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28641543)

  • 1. Zein-based Nanocarriers as Potential Natural Alternatives for Drug and Gene Delivery: Focus on Cancer Therapy.
    Elzoghby A; Freag M; Mamdouh H; Elkhodairy K
    Curr Pharm Des; 2017; 23(35):5261-5271. PubMed ID: 28641543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-based nanoparticles for drug delivery purposes.
    Martínez-López AL; Pangua C; Reboredo C; Campión R; Morales-Gracia J; Irache JM
    Int J Pharm; 2020 May; 581():119289. PubMed ID: 32243968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.
    Sabra S; Abdelmoneem M; Abdelwakil M; Mabrouk MT; Anwar D; Mohamed R; Khattab S; Bekhit A; Elkhodairy K; Freag M; Elzoghby A
    Curr Pharm Des; 2017; 23(35):5213-5229. PubMed ID: 28552068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer.
    Sabra SA; Elzoghby AO; Sheweita SA; Haroun M; Helmy MW; Eldemellawy MA; Xia Y; Goodale D; Allan AL; Rohani S
    Eur J Pharm Biopharm; 2018 Jul; 128():156-169. PubMed ID: 29689288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Zein Conjugation and Surface Modification for Targeting Drug Delivery.
    Tran PH; Tran TT
    Curr Drug Targets; 2020; 21(4):406-415. PubMed ID: 31518220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers.
    Alqahtani MS; Islam MS; Podaralla S; Kaushik RS; Reineke J; Woyengo T; Perumal O
    Mol Pharm; 2017 Mar; 14(3):757-769. PubMed ID: 28103046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of protein- and Peptide-based nanoparticles as potential vehicles for anticancer drugs.
    Elzoghby AO; Elgohary MM; Kamel NM
    Adv Protein Chem Struct Biol; 2015; 98():169-221. PubMed ID: 25819280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers.
    Mokhtarzadeh A; Alibakhshi A; Yaghoobi H; Hashemi M; Hejazi M; Ramezani M
    Expert Opin Biol Ther; 2016 Jun; 16(6):771-85. PubMed ID: 26998622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications.
    Ruttala HB; Ramasamy T; Madeshwaran T; Hiep TT; Kandasamy U; Oh KT; Choi HG; Yong CS; Kim JO
    Arch Pharm Res; 2018 Feb; 41(2):111-129. PubMed ID: 29214601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Functionalized Mesoporous Silica Nanoparticles for Tumor Targeted Drug Delivery and Theranostics.
    Zhang W; Liu M; Liu A; Zhai G
    Curr Pharm Des; 2017; 23(23):3367-3382. PubMed ID: 27784244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium nanoparticles: potential in cancer gene and drug delivery.
    Maiyo F; Singh M
    Nanomedicine (Lond); 2017 May; 12(9):1075-1089. PubMed ID: 28440710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-derived Exosomes as Promising Carriers for Drug Delivery and Targeted Therapy.
    Wang X; Zhang H; Yang H; Bai M; Ning T; Li S; Li J; Deng T; Ying G; Ba Y
    Curr Cancer Drug Targets; 2018; 18(4):347-354. PubMed ID: 28699500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-based nanocarriers as promising drug and gene delivery systems.
    Elzoghby AO; Samy WM; Elgindy NA
    J Control Release; 2012 Jul; 161(1):38-49. PubMed ID: 22564368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose-based Nanocarriers as Platforms for Cancer Therapy.
    Meng LY; Wang B; Ma MG; Zhu JF
    Curr Pharm Des; 2017; 23(35):5292-5300. PubMed ID: 29086678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system.
    Gagliardi A; Paolino D; Iannone M; Palma E; Fresta M; Cosco D
    Int J Nanomedicine; 2018; 13():601-614. PubMed ID: 29430179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of novel biodegradable methoxy poly(ethylene glycol)-zein micelles for effective delivery of curcumin.
    Podaralla S; Averineni R; Alqahtani M; Perumal O
    Mol Pharm; 2012 Sep; 9(9):2778-86. PubMed ID: 22770552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Properties of Tumor Microenvironments for Controlling Local, On-Demand Delivery from Biopolymer-Based Nanocarriers.
    Alshememry AK; El-Tokhy SS; Unsworth LD
    Curr Pharm Des; 2017; 23(35):5358-5391. PubMed ID: 28530543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocarriers for the simultaneous co-delivery of therapeutic genes and anticancer drugs.
    Choudhury NN; He H
    Curr Pharm Biotechnol; 2012 Jun; 13(7):1317-31. PubMed ID: 22201588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications.
    Lakkakula JR; Maçedo Krause RW
    Nanomedicine (Lond); 2014 May; 9(6):877-94. PubMed ID: 24981652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of zein-based microcarrier system for sustained delivery of aceclofenac sodium.
    Karthikeyan K; Lakra R; Rajaram R; Korrapati PS
    AAPS PharmSciTech; 2012 Mar; 13(1):143-9. PubMed ID: 22167417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.