These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28641670)

  • 1. Novel Stokesian Metrics that Quantify Collision Efficiency, Floc Strength, and Discrete Settling Behavior.
    Mancell-Egala WASK; De Clippeleir H; Su C; Takacs I; Novak JT; Murthy SN
    Water Environ Res; 2017 Jul; 89(7):586-597. PubMed ID: 28641670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming floc formation limitations in high-rate activated sludge systems.
    Van Winckel T; Liu X; Vlaeminck SE; Takács I; Al-Omari A; Sturm B; Kjellerup BV; Murthy SN; De Clippeleir H
    Chemosphere; 2019 Jan; 215():342-352. PubMed ID: 30326440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Settling regimen transitions quantify solid separation limitations through correlation with floc size and shape.
    Mancell-Egala WASK; Su C; Takacs I; Novak JT; Kinnear DJ; Murthy SN; De Clippeleir H
    Water Res; 2017 Feb; 109():54-68. PubMed ID: 27865172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Settling velocities of multifractal flocs formed in chemical coagulation process.
    Vahedi A; Gorczyca B
    Water Res; 2014 Apr; 53():322-8. PubMed ID: 24530551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limit of stokesian settling concentration characterizes sludge settling velocity.
    Mancell-Egala WASK; Kinnear DJ; Jones KL; De Clippeleir H; Takács I; Murthy SN
    Water Res; 2016 Mar; 90():100-110. PubMed ID: 26724444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution.
    Cui Y; Ravnik J; Steinmann P; Hriberšek M
    Water Res; 2019 Jul; 158():159-170. PubMed ID: 31035193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of floc strength and breakage.
    Jarvis P; Jefferson B; Gregory J; Parsons SA
    Water Res; 2005 Sep; 39(14):3121-37. PubMed ID: 16000210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot scale evaluation on ferric floc sludge concentration with pelleting flocculation blanket process.
    Huang TL; Zhang G; Guo N; He WJ; Han HD; Li ZP
    Water Sci Technol; 2010; 62(9):2021-7. PubMed ID: 21045327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics in flocculation and settling properties studied at a full-scale activated sludge plant.
    Wilén BM; Lumley D; Mattsson A; Mino T
    Water Environ Res; 2010 Feb; 82(2):155-68. PubMed ID: 20183982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fractal structure and physicochemical characteristics analysis of aerobic sludge floc in A2/O process].
    Xuan KJ; Wang YL; Wei KJ; Du JD; Zhang T
    Huan Jing Ke Xue; 2009 Jul; 30(7):2013-21. PubMed ID: 19775001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Breakage and regrowth of flocs coagulation with polyaluminum chloride (PACl)].
    Zhang ZG; Luan ZK; Zhao Y; Cui JH; Chen ZY; Li YZ
    Huan Jing Ke Xue; 2007 Feb; 28(2):346-51. PubMed ID: 17489195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics.
    Chaignon V; Lartiges BS; El Samrani A; Mustin C
    Water Res; 2002 Feb; 36(3):676-84. PubMed ID: 11827330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fractal dimensions to study the structure of flocs formed in lime softening process.
    Vahedi A; Gorczyca B
    Water Res; 2011 Jan; 45(2):545-56. PubMed ID: 20937512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of floc strength based on morphological analysis and optical online monitoring].
    Jin PK; Feng YN; Wang BB; Wang XC
    Huan Jing Ke Xue; 2013 May; 34(5):1802-7. PubMed ID: 23914531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions.
    Vahedi A; Gorczyca B
    Water Res; 2012 Sep; 46(13):4188-94. PubMed ID: 22673348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The duplicity of floc strength.
    Jarvis P; Jefferson B; Parsons S
    Water Sci Technol; 2004; 50(12):63-70. PubMed ID: 15686004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards more predictive clarification models via experimental determination of flocculent settling coefficient value.
    Ngo KN; Van Winckel T; Massoudieh A; Wett B; Al-Omari A; Murthy S; Takács I; De Clippeleir H
    Water Res; 2021 Feb; 190():116294. PubMed ID: 33360101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances.
    Wilén BM; Jin B; Lant P
    Water Sci Technol; 2003; 47(12):95-103. PubMed ID: 12926675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial composition of activated sludge--importance for floc and sludge properties.
    Nielsen PH; Thomsen TR; Nielsen JL
    Water Sci Technol; 2004; 49(10):51-8. PubMed ID: 15259937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chlorination on the adhesion strength and deflocculation of activated sludge flocs.
    Mascarenhas T; Mikkelsen LH; Nielsen PH
    Water Environ Res; 2004; 76(4):327-33. PubMed ID: 15508423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.