These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 2864170)
1. Changes in lipid fluidity and fatty acid composition with altered culture temperature in Tetrahymena pyriformis-NT1. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):287-92. PubMed ID: 2864170 [TBL] [Abstract][Full Text] [Related]
2. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):303-10. PubMed ID: 2864172 [TBL] [Abstract][Full Text] [Related]
3. Correlation between fluidity and fatty acid composition of phospholipid species in Tetrahymena pyriformis during temperature acclimation. Ohki K; Kasai R; Nozawa Y Biochim Biophys Acta; 1979 Dec; 558(3):273-81. PubMed ID: 228721 [TBL] [Abstract][Full Text] [Related]
4. The effects of temperature upon the electrophysiological properties of Tetrahymena pyriformis-NT1. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):293-302. PubMed ID: 2864171 [TBL] [Abstract][Full Text] [Related]
5. Changes in the lipid composition and physical properties of Tetrahymena ciliary membranes following low-temperature acclimation. Ramesha CS; Thompson GA Biochemistry; 1982 Jul; 21(15):3612-7. PubMed ID: 6810927 [No Abstract] [Full Text] [Related]
6. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Dickens BF; Thompson GA Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1. Possible evidence for temperature-mediated induction of palmitoyl-CoA desaturase. Nozawa Y; Kasai R Biochim Biophys Acta; 1978 Apr; 529(1):54-66. PubMed ID: 416850 [TBL] [Abstract][Full Text] [Related]
8. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid. Ohki K; Goto M; Nozawa Y Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321 [TBL] [Abstract][Full Text] [Related]
9. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells. Martin CE; Hiramitsu K; Kitajima Y; Nozawa Y; Skriver L; Thompson GA Biochemistry; 1976 Nov; 15(24):5218-27. PubMed ID: 826266 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a correlation between swimming velocity and membrane fluidity of Tetrahymena cells. Goto M; Ohki K; Nozawa Y Biochim Biophys Acta; 1982 Dec; 693(2):335-40. PubMed ID: 6818990 [TBL] [Abstract][Full Text] [Related]
11. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes. Yamauchi T; Ohki K; Maruyama H; Nozawa Y Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472 [TBL] [Abstract][Full Text] [Related]
12. Molecular control of membrane properties during temperature acclimation. Membrane fluidity regulation of fatty acid desaturase action? Kasai R; Kitajima Y; Martin CE; Nozawa Y; Skriver L; Thompson GA Biochemistry; 1976 Nov; 15(24):5228-33. PubMed ID: 826267 [TBL] [Abstract][Full Text] [Related]
13. Sterol manipulation that modulates the alteration in membrane fluidity of Tetrahymena pyriformis during temperature acclimation. Umeki S; Nozawa Y Biol Chem Hoppe Seyler; 1986 Mar; 367(3):235-9. PubMed ID: 3085690 [TBL] [Abstract][Full Text] [Related]
14. Adaptive modification of membrane lipids in Tetrahymena pyriformis during starvation. Alterations in phospholipid composition and positional distribution of fatty acyl chains. Kasai R; Watanabe T; Fukushima H; Iida H; Nozawa Y Biochim Biophys Acta; 1981 Oct; 666(1):36-46. PubMed ID: 6794634 [No Abstract] [Full Text] [Related]
15. The effects of high concentrations of sodium or calcium ions on the lipid composition and properties of Tetrahymena membranes. Mattox SM; Thompson GA Biochim Biophys Acta; 1980 Jun; 599(1):24-31. PubMed ID: 6772220 [TBL] [Abstract][Full Text] [Related]
16. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity. Kameyama Y; Ohki K; Nozawa Y J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538 [TBL] [Abstract][Full Text] [Related]
17. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes. Maruyama H; Banno Y; Watanabe T; Nozawa Y Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352 [TBL] [Abstract][Full Text] [Related]
18. Effects of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties. Martin CE; Siegel D; Aaronson LR Biochim Biophys Acta; 1981 Sep; 665(3):399-407. PubMed ID: 6457645 [TBL] [Abstract][Full Text] [Related]
19. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica. Abbas CA; Card GL Biochim Biophys Acta; 1980 Nov; 602(3):469-76. PubMed ID: 7437420 [TBL] [Abstract][Full Text] [Related]
20. Thermoadaptive regulation of microsomal desaturase and electron-transport enzyme activities in lipid-manipulated Tetrahymena cells. Extent of unsaturated fatty acid production is dependent on membrane fluidity before temperature down-shift. Umeki S; Nozawa Y Biochim Biophys Acta; 1984 Mar; 793(1):123-8. PubMed ID: 6422990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]