These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 28641890)
1. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization. Hou Z; Lu W; Xue H; Lin J J Contam Hydrol; 2017 Aug; 203():28-37. PubMed ID: 28641890 [TBL] [Abstract][Full Text] [Related]
2. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method. Ouyang Q; Lu W; Hou Z; Zhang Y; Li S; Luo J J Contam Hydrol; 2017 May; 200():15-23. PubMed ID: 28363342 [TBL] [Abstract][Full Text] [Related]
3. Application of ensemble surrogates and adaptive sequential sampling to optimal groundwater remediation design at DNAPLs-contaminated sites. Ouyang Q; Lu W; Miao T; Deng W; Jiang C; Luo J J Contam Hydrol; 2017 Dec; 207():31-38. PubMed ID: 29128132 [TBL] [Abstract][Full Text] [Related]
4. Conservative strategy-based ensemble surrogate model for optimal groundwater remediation design at DNAPLs-contaminated sites. Ouyang Q; Lu W; Lin J; Deng W; Cheng W J Contam Hydrol; 2017 Aug; 203():1-8. PubMed ID: 28583424 [TBL] [Abstract][Full Text] [Related]
5. Optimized stacking, a new method for constructing ensemble surrogate models applied to DNAPL-contaminated aquifer remediation. Shams R; Alimohammadi S; Yazdi J J Contam Hydrol; 2021 Dec; 243():103914. PubMed ID: 34798506 [TBL] [Abstract][Full Text] [Related]
6. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Qin XS; Huang GH; Chakma A; Chen B; Zeng GM Sci Total Environ; 2007 Aug; 381(1-3):17-37. PubMed ID: 17509664 [TBL] [Abstract][Full Text] [Related]
7. Parallel heuristic search strategy based on a Bayesian approach for simultaneous recognition of contaminant sources and aquifer parameters at DNAPL-contaminated sites. Lu W; Wang H; Li J Environ Sci Pollut Res Int; 2020 Oct; 27(29):37134-37148. PubMed ID: 32583106 [TBL] [Abstract][Full Text] [Related]
8. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method-A Case Study of Western Jilin Province. An Y; Lu W; Cheng W Int J Environ Res Public Health; 2015 Jul; 12(8):8897-918. PubMed ID: 26264008 [TBL] [Abstract][Full Text] [Related]
9. A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction-treatment. Zhang S; Qiang J; Liu H; Zhu X; Lv H Environ Sci Pollut Res Int; 2022 Jun; 29(28):42792-42808. PubMed ID: 35088275 [TBL] [Abstract][Full Text] [Related]
10. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study. Wu B; Li H; Du X; Zhong L; Yang B; Du P; Gu Q; Li F Chemosphere; 2016 Feb; 144():2142-9. PubMed ID: 26583297 [TBL] [Abstract][Full Text] [Related]
11. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations. Schaerlaekens J; Mertens J; Van Linden J; Vermeiren G; Carmeliet J; Feyen J J Contam Hydrol; 2006 Aug; 86(3-4):176-94. PubMed ID: 16600420 [TBL] [Abstract][Full Text] [Related]
12. A construction strategy of Kriging surrogate model based on Rosenblatt transformation of associated random variables and its application in groundwater remediation. Qiang J; Zhang S; Liu H; Zhu X; Zhou J J Environ Manage; 2024 Jan; 349():119555. PubMed ID: 37980793 [TBL] [Abstract][Full Text] [Related]
13. Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs. Pang M; Shoemaker CA Sci Total Environ; 2023 Jan; 857(Pt 3):159544. PubMed ID: 36270371 [TBL] [Abstract][Full Text] [Related]
14. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ. Piscopo AN; Neupauer RM; Kasprzyk JR J Contam Hydrol; 2016 Jul; 190():29-43. PubMed ID: 27153361 [TBL] [Abstract][Full Text] [Related]
15. Multi objective optimization of the setup of a surfactant-enhanced DNAPL remediation. Schaerlaekens J; Carmeliet J; Feyen J Environ Sci Technol; 2005 Apr; 39(7):2327-33. PubMed ID: 15871272 [TBL] [Abstract][Full Text] [Related]
16. Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty. He L; Huang GH; Lu HW; Zeng GM Environ Sci Technol; 2008 Mar; 42(6):2009-14. PubMed ID: 18409629 [TBL] [Abstract][Full Text] [Related]
17. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures. Huo L; Liu G; Yang X; Ahmad Z; Zhong H Chemosphere; 2020 Aug; 252():126620. PubMed ID: 32443278 [TBL] [Abstract][Full Text] [Related]
18. Coupled Monte Carlo simulation and Copula theory for uncertainty analysis of multiphase flow simulation models. Jiang X; Na J; Lu W; Zhang Y Environ Sci Pollut Res Int; 2017 Nov; 24(31):24284-24296. PubMed ID: 28889205 [TBL] [Abstract][Full Text] [Related]
19. Meta-Modeling-Based Groundwater Remediation Optimization under Flexibility in Environmental Standard. He L; Xu Z; Fan X; Li J; Lu H Water Environ Res; 2017 May; 89(5):456-465. PubMed ID: 28442006 [TBL] [Abstract][Full Text] [Related]
20. [Laboratory evaluation of remediation of nitrobenzene contaminated aquifer by using groundwater circulation well]. Bai J; Zhao YS; Sun C; Qin CY; Yu L Huan Jing Ke Xue; 2014 Oct; 35(10):3775-81. PubMed ID: 25693382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]