These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 28641935)
1. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation. Hvam ML; Cai Y; Dagnæs-Hansen F; Nielsen JS; Wengel J; Kjems J; Howard KA Mol Ther; 2017 Jul; 25(7):1710-1717. PubMed ID: 28641935 [TBL] [Abstract][Full Text] [Related]
2. Albumin-Binding Fatty Acid-Modified Gapmer Antisense Oligonucleotides for Modulation of Pharmacokinetics. Cai Y; Lou C; Wengel J; Howard KA Methods Mol Biol; 2020; 2176():163-174. PubMed ID: 32865790 [TBL] [Abstract][Full Text] [Related]
3. Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity. Cai Y; Makarova AM; Wengel J; Howard KA J Gene Med; 2018 Jul; 20(7-8):e3025. PubMed ID: 29800498 [TBL] [Abstract][Full Text] [Related]
4. Propensities of Fatty Acid-Modified ASOs: Self-Assembly vs Albumin Binding. Kusznir EA; Hau JC; Portmann M; Reinhart AG; Falivene F; Bastien J; Worm J; Ross A; Lauer M; Ringler P; Sladojevich F; Huber S; Bleicher K; Keller M Bioconjug Chem; 2023 May; 34(5):866-879. PubMed ID: 37145959 [TBL] [Abstract][Full Text] [Related]
5. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Østergaard ME; De Hoyos CL; Wan WB; Shen W; Low A; Berdeja A; Vasquez G; Murray S; Migawa MT; Liang XH; Swayze EE; Crooke ST; Seth PP Nucleic Acids Res; 2020 Feb; 48(4):1691-1700. PubMed ID: 31980820 [TBL] [Abstract][Full Text] [Related]
6. Development of gapmer antisense oligonucleotide with deoxyribonucleic guanidine (DNG) modifications. Kojima N; Shrestha AR; Akisawa T; Piao H; Kizawa H; Ohmiya Y; Kurita R Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):258-269. PubMed ID: 31556356 [TBL] [Abstract][Full Text] [Related]
7. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Shen W; De Hoyos CL; Migawa MT; Vickers TA; Sun H; Low A; Bell TA; Rahdar M; Mukhopadhyay S; Hart CE; Bell M; Riney S; Murray SF; Greenlee S; Crooke RM; Liang XH; Seth PP; Crooke ST Nat Biotechnol; 2019 Jun; 37(6):640-650. PubMed ID: 31036929 [TBL] [Abstract][Full Text] [Related]
8. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides. Hori SI; Mitsuoka Y; Kugimiya A Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice. Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955 [TBL] [Abstract][Full Text] [Related]
10. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093 [TBL] [Abstract][Full Text] [Related]
11. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity. Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041 [TBL] [Abstract][Full Text] [Related]
15. Co-Administration of an Excipient Oligonucleotide Helps Delineate Pathways of Productive and Nonproductive Uptake of Phosphorothioate Antisense Oligonucleotides in the Liver. Donner AJ; Wancewicz EV; Murray HM; Greenlee S; Post N; Bell M; Lima WF; Swayze EE; Seth PP Nucleic Acid Ther; 2017 Aug; 27(4):209-220. PubMed ID: 28448194 [TBL] [Abstract][Full Text] [Related]
16. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Anderson BA; Freestone GC; Low A; De-Hoyos CL; Iii WJD; Østergaard ME; Migawa MT; Fazio M; Wan WB; Berdeja A; Scandalis E; Burel SA; Vickers TA; Crooke ST; Swayze EE; Liang X; Seth PP Nucleic Acids Res; 2021 Sep; 49(16):9026-9041. PubMed ID: 34417625 [TBL] [Abstract][Full Text] [Related]
17. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Iwamoto N; Butler DCD; Svrzikapa N; Mohapatra S; Zlatev I; Sah DWY; Meena ; Standley SM; Lu G; Apponi LH; Frank-Kamenetsky M; Zhang JJ; Vargeese C; Verdine GL Nat Biotechnol; 2017 Sep; 35(9):845-851. PubMed ID: 28829437 [TBL] [Abstract][Full Text] [Related]
18. Comparative Characterization of Hepatic Distribution and mRNA Reduction of Antisense Oligonucleotides Conjugated with Triantennary N-Acetyl Galactosamine and Lipophilic Ligands Targeting Apolipoprotein B. Watanabe A; Nakajima M; Kasuya T; Onishi R; Kitade N; Mayumi K; Ikehara T; Kugimiya A J Pharmacol Exp Ther; 2016 May; 357(2):320-30. PubMed ID: 26907624 [TBL] [Abstract][Full Text] [Related]
19. The Combination of Mesyl-Phosphoramidate Inter-Nucleotide Linkages and 2'- Zhang L; Liang XH; De Hoyos CL; Migawa M; Nichols JG; Freestone G; Tian J; Seth PP; Crooke ST Nucleic Acid Ther; 2022 Oct; 32(5):401-411. PubMed ID: 35861704 [TBL] [Abstract][Full Text] [Related]
20. Rational Design of Chimeric Antisense Oligonucleotides on a Mixed PO-PS Backbone for Splice-Switching Applications. Le BT; Chen S; Veedu RN Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]