BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28642293)

  • 1. Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation?
    Barnes SC; Ball N; Panerai RB; Robinson TG; Haunton VJ
    J Appl Physiol (1985); 2017 Sep; 123(3):558-566. PubMed ID: 28642293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How many squat-stand manoeuvres to assess dynamic cerebral autoregulation?
    Barnes SC; Ball N; Haunton VJ; Robinson TG; Panerai RB
    Eur J Appl Physiol; 2018 Nov; 118(11):2377-2384. PubMed ID: 30128850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does depth of squat-stand maneuver affect estimates of dynamic cerebral autoregulation?
    Batterham AP; Panerai RB; Robinson TG; Haunton VJ
    Physiol Rep; 2020 Aug; 8(16):e14549. PubMed ID: 32812372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremes of cerebral blood flow during hypercapnic squat-stand maneuvers.
    Barnes SC; Haunton VJ; Beishon L; Llwyd O; Robinson TG; Panerai RB
    Physiol Rep; 2021 Oct; 9(19):e15021. PubMed ID: 34617685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis.
    Barnes SC; Ball N; Haunton VJ; Robinson TG; Panerai RB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1240-H1248. PubMed ID: 28887332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers.
    Panerai RB; Barnes SC; Nath M; Ball N; Robinson TG; Haunton VJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R730-R740. PubMed ID: 29975567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of cerebral blood flow velocity change during squat-stand maneuvers.
    Panerai RB; Batterham A; Robinson TG; Haunton VJ
    Am J Physiol Regul Integr Comp Physiol; 2021 Apr; 320(4):R452-R466. PubMed ID: 33533312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest.
    Panerai RB; Barnes SC; Batterham AP; Robinson TG; Haunton VJ
    J Cereb Blood Flow Metab; 2023 Apr; 43(4):552-564. PubMed ID: 36420777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in cerebral autoregulation are unaffected by menstrual cycle phase in young, healthy women.
    Favre ME; Serrador JM
    Am J Physiol Heart Circ Physiol; 2019 Apr; 316(4):H920-H933. PubMed ID: 30707610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver.
    van Beek AH; Olde Rikkert MG; Pasman JW; Hopman MT; Claassen JA
    Ultrasound Med Biol; 2010 Feb; 36(2):192-201. PubMed ID: 20045593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Models of Spontaneous Variations, Maneuvers and Indexes to Assess Dynamic Cerebral Autoregulation.
    Chacón M; Noh SH; Landerretche J; Jara JL
    Acta Neurochir Suppl; 2018; 126():159-162. PubMed ID: 29492553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does oscillation size matter? Impact of added resistance on the cerebral pressure-flow Relationship in females and males.
    Newel KT; Burma JS; Carere J; Kennedy CM; Smirl JD
    Physiol Rep; 2022 May; 10(10):e15278. PubMed ID: 35581899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance exercise acutely elevates dynamic cerebral autoregulation gain.
    Smail OJ; Clarke DJ; Al-Alem Q; Wallis W; Barker AR; Smirl JD; Bond B
    Physiol Rep; 2023 Apr; 11(8):e15676. PubMed ID: 37100594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower dynamic cerebral autoregulation following acute bout of low-volume high-intensity interval exercise in chronic stroke compared to healthy adults.
    Whitaker AA; Aaron SE; Chertoff M; Brassard P; Buchanan J; Nguyen K; Vidoni ED; Waghmare S; Eickmeyer SM; Montgomery RN; Billinger SA
    J Appl Physiol (1985); 2024 Apr; 136(4):707-720. PubMed ID: 38357728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation.
    Perry BG; Cotter JD; Korad S; Lark S; Labrecque L; Brassard P; Paquette M; Le Blanc O; Lucas SJE
    Exp Physiol; 2019 Dec; 104(12):1780-1789. PubMed ID: 31549452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.
    Xing CY; Tarumi T; Meijers RL; Turner M; Repshas J; Xiong L; Ding K; Vongpatanasin W; Yuan LJ; Zhang R
    Hypertension; 2017 Apr; 69(4):712-720. PubMed ID: 28193707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure.
    Brodie FG; Atkins ER; Robinson TG; Panerai RB
    Clin Sci (Lond); 2009 Mar; 116(6):513-20. PubMed ID: 18939945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cerebral autoregulation during repeated squat-stand maneuvers.
    Claassen JA; Levine BD; Zhang R
    J Appl Physiol (1985); 2009 Jan; 106(1):153-60. PubMed ID: 18974368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices.
    Mahdi A; Nikolic D; Birch AA; Olufsen MS; Panerai RB; Simpson DM; Payne SJ
    Med Eng Phys; 2017 Sep; 47():151-158. PubMed ID: 28694108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.