BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28642345)

  • 1. Evolution of nonspectral rhodopsin function at high altitudes.
    Castiglione GM; Hauser FE; Liao BS; Lujan NK; Van Nynatten A; Morrow JM; Schott RK; Bhattacharyya N; Dungan SZ; Chang BSW
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7385-7390. PubMed ID: 28642345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms.
    Castiglione GM; Schott RK; Hauser FE; Chang BSW
    Evolution; 2018 Jan; 72(1):170-186. PubMed ID: 29143302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated evolution and positive selection of rhodopsin in Tibetan loaches living in high altitude.
    Lv W; Lei Y; Deng Y; Sun N; Liu X; Yang L; He S
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2598-2606. PubMed ID: 33470199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America.
    Hauser FE; Ilves KL; Schott RK; Castiglione GM; López-Fernández H; Chang BSW
    Mol Biol Evol; 2017 Oct; 34(10):2650-2664. PubMed ID: 28957507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.
    Dungan SZ; Kosyakov A; Chang BS
    Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of Antarctic Icefish Vision to Extreme Environments.
    Castiglione GM; Hauser FE; Van Nynatten A; Chang BSW
    Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36763103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.
    van Hazel I; Dungan SZ; Hauser FE; Morrow JM; Endler JA; Chang BS
    Protein Sci; 2016 Jul; 25(7):1308-18. PubMed ID: 26889650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments.
    Gutierrez EA; Castiglione GM; Morrow JM; Schott RK; Loureiro LO; Lim BK; Chang BSW
    Mol Biol Evol; 2018 Oct; 35(10):2422-2434. PubMed ID: 30010964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes.
    Morrow JM; Lazic S; Dixon Fox M; Kuo C; Schott RK; de A Gutierrez E; Santini F; Tropepe V; Chang BS
    J Exp Biol; 2017 Jan; 220(Pt 2):294-303. PubMed ID: 27811293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes.
    Van Nynatten A; Janzen FH; Brochu K; Maldonado-Ocampo JA; Crampton WGR; Chang BSW; Lovejoy NR
    Proc Biol Sci; 2019 Jul; 286(1906):20191182. PubMed ID: 31288710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika.
    Ricci V; Ronco F; Musilova Z; Salzburger W
    Mol Ecol; 2022 May; 31(10):2882-2897. PubMed ID: 35302684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epistatic interactions influence terrestrial-marine functional shifts in cetacean rhodopsin.
    Dungan SZ; Chang BS
    Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28250185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of positively selected amino acid substitutions in mammalian rhodopsin evolution.
    Fernández-Sampedro MA; Invergo BM; Ramon E; Bertranpetit J; Garriga P
    Sci Rep; 2016 Feb; 6():21570. PubMed ID: 26865329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision.
    Castiglione GM; Chang BS
    Elife; 2018 Oct; 7():. PubMed ID: 30362942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.
    Van Nynatten A; Bloom D; Chang BS; Lovejoy NR
    Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26224386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals.
    Zhu K; Ge D; Wen Z; Xia L; Yang Q
    J Mol Evol; 2018 Dec; 86(9):618-634. PubMed ID: 30327830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation?
    Larmuseau MH; Huyse T; Vancampenhout K; Van Houdt JK; Volckaert FA
    Mol Phylogenet Evol; 2010 May; 55(2):689-98. PubMed ID: 19822217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated.
    Ebert D; Andrew RL
    Mol Ecol; 2009 Oct; 18(20):4140-2. PubMed ID: 19857228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.
    Schott RK; Refvik SP; Hauser FE; López-Fernández H; Chang BS
    Mol Biol Evol; 2014 May; 31(5):1149-65. PubMed ID: 24509690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.