These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28642570)
1. Thermal stability and topological protection of skyrmions in nanotracks. Cortés-Ortuño D; Wang W; Beg M; Pepper RA; Bisotti MA; Carey R; Vousden M; Kluyver T; Hovorka O; Fangohr H Sci Rep; 2017 Jun; 7(1):4060. PubMed ID: 28642570 [TBL] [Abstract][Full Text] [Related]
2. Role of higher-order exchange interactions for skyrmion stability. Paul S; Haldar S; von Malottki S; Heinze S Nat Commun; 2020 Sep; 11(1):4756. PubMed ID: 32958753 [TBL] [Abstract][Full Text] [Related]
3. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures. Wu H; Groß F; Dai B; Lujan D; Razavi SA; Zhang P; Liu Y; Sobotkiewich K; Förster J; Weigand M; Schütz G; Li X; Gräfe J; Wang KL Adv Mater; 2020 Aug; 32(34):e2003380. PubMed ID: 32666575 [TBL] [Abstract][Full Text] [Related]
4. Magnetic Direct-Write Skyrmion Nanolithography. Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236 [TBL] [Abstract][Full Text] [Related]
5. Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure. Yu G; Jenkins A; Ma X; Razavi SA; He C; Yin G; Shao Q; He QL; Wu H; Li W; Jiang W; Han X; Li X; Bleszynski Jayich AC; Amiri PK; Wang KL Nano Lett; 2018 Feb; 18(2):980-986. PubMed ID: 29271208 [TBL] [Abstract][Full Text] [Related]
6. Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation. Fallon K; Hughes S; Zeissler K; Legrand W; Ajejas F; Maccariello D; McFadzean S; Smith W; McGrouther D; Collin S; Reyren N; Cros V; Marrows CH; McVitie S Small; 2020 Apr; 16(13):e1907450. PubMed ID: 32141234 [TBL] [Abstract][Full Text] [Related]
7. The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field. Schott M; Bernand-Mantel A; Ranno L; Pizzini S; Vogel J; Béa H; Baraduc C; Auffret S; Gaudin G; Givord D Nano Lett; 2017 May; 17(5):3006-3012. PubMed ID: 28437086 [TBL] [Abstract][Full Text] [Related]
8. Stabilization and racetrack application of asymmetric Néel skyrmions in hybrid nanostructures. Zelent M; Moalic M; Mruczkiewicz M; Li X; Zhou Y; Krawczyk M Sci Rep; 2023 Aug; 13(1):13572. PubMed ID: 37604926 [TBL] [Abstract][Full Text] [Related]
9. Skyrmions Subtractor Based on Dzyaloshinskii-Moriya Interaction Gate. Cai N; Liu Y J Phys Chem Lett; 2024 Aug; 15(30):7775-7781. PubMed ID: 39047264 [TBL] [Abstract][Full Text] [Related]
10. Nontraditional Movement Behavior of Skyrmion in a Circular-Ring Nanotrack. Cai N; Zhang X; Hu Y; Liu Y Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999331 [TBL] [Abstract][Full Text] [Related]
11. Confinement and Protection of Skyrmions by Patterns of Modified Magnetic Properties. Ohara K; Zhang X; Chen Y; Wei Z; Ma Y; Xia J; Zhou Y; Liu X Nano Lett; 2021 May; 21(10):4320-4326. PubMed ID: 33950694 [TBL] [Abstract][Full Text] [Related]
12. Helium Ions Put Magnetic Skyrmions on the Track. Juge R; Bairagi K; Rana KG; Vogel J; Sall M; Mailly D; Pham VT; Zhang Q; Sisodia N; Foerster M; Aballe L; Belmeguenai M; Roussigné Y; Auffret S; Buda-Prejbeanu LD; Gaudin G; Ravelosona D; Boulle O Nano Lett; 2021 Apr; 21(7):2989-2996. PubMed ID: 33740371 [TBL] [Abstract][Full Text] [Related]
13. A micromagnetic theory of skyrmion lifetime in ultrathin ferromagnetic films. Bernand-Mantel A; Muratov CB; Slastikov VV Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2122237119. PubMed ID: 35858324 [TBL] [Abstract][Full Text] [Related]
14. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Karube K; White JS; Morikawa D; Dewhurst CD; Cubitt R; Kikkawa A; Yu X; Tokunaga Y; Arima TH; Rønnow HM; Tokura Y; Taguchi Y Sci Adv; 2018 Sep; 4(9):eaar7043. PubMed ID: 30225364 [TBL] [Abstract][Full Text] [Related]
15. Creation of magnetic skyrmions by surface acoustic waves. Yokouchi T; Sugimoto S; Rana B; Seki S; Ogawa N; Kasai S; Otani Y Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267 [TBL] [Abstract][Full Text] [Related]
16. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Li S; Du A; Wang Y; Wang X; Zhang X; Cheng H; Cai W; Lu S; Cao K; Pan B; Lei N; Kang W; Liu J; Fert A; Hou Z; Zhao W Sci Bull (Beijing); 2022 Apr; 67(7):691-699. PubMed ID: 36546133 [TBL] [Abstract][Full Text] [Related]
17. Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. Ma C; Zhang X; Xia J; Ezawa M; Jiang W; Ono T; Piramanayagam SN; Morisako A; Zhou Y; Liu X Nano Lett; 2019 Jan; 19(1):353-361. PubMed ID: 30537837 [TBL] [Abstract][Full Text] [Related]
18. Topological excitations in a kagome magnet. Pereiro M; Yudin D; Chico J; Etz C; Eriksson O; Bergman A Nat Commun; 2014 Sep; 5():4815. PubMed ID: 25198354 [TBL] [Abstract][Full Text] [Related]
19. Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields. Hou Z; Wang Y; Lan X; Li S; Wan X; Meng F; Hu Y; Fan Z; Feng C; Qin M; Zeng M; Zhang X; Liu X; Fu X; Yu G; Zhou G; Zhou Y; Zhao W; Gao X; Liu JM Adv Mater; 2022 Mar; 34(11):e2107908. PubMed ID: 34969153 [TBL] [Abstract][Full Text] [Related]