These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 28642613)

  • 1. Protecting visual short-term memory during maintenance: Attentional modulation of target and distractor representations.
    Vissers ME; Gulbinaite R; van den Bos T; Slagter HA
    Sci Rep; 2017 Jun; 7(1):4061. PubMed ID: 28642613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state Visual Evoked Potentials Reveal Dynamic (Re)allocation of Spatial Attention during Maintenance and Utilization of Visual Working Memory.
    Chota S; Bruat AT; Van der Stigchel S; Strauch C
    J Cogn Neurosci; 2024 May; 36(5):800-814. PubMed ID: 38261370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared filtering processes link attentional and visual short-term memory capacity limits.
    Bettencourt KC; Michalka SW; Somers DC
    J Vis; 2011 Sep; 11(10):. PubMed ID: 21965551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual short-term memory load strengthens selective attention.
    Roper ZJ; Vecera SP
    Psychon Bull Rev; 2014 Apr; 21(2):549-56. PubMed ID: 24002967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.
    Marini F; Scott J; Aron AR; Ester EF
    Atten Percept Psychophys; 2017 Jul; 79(5):1384-1392. PubMed ID: 28439791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors.
    Allon AS; Luria R
    Psychophysiology; 2019 May; 56(5):e13323. PubMed ID: 30609072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an integrative model of visual short-term memory maintenance: Evidence from the effects of attentional control, load, decay, and their interactions in childhood.
    Shimi A; Scerif G
    Cognition; 2017 Dec; 169():61-83. PubMed ID: 28865285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention modulates maintenance of representations in visual short-term memory.
    Kuo BC; Stokes MG; Nobre AC
    J Cogn Neurosci; 2012 Jan; 24(1):51-60. PubMed ID: 21736457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lasting memory enhancements of retrospective attention.
    Reaves S; Strunk J; Phillips S; Verhaeghen P; Duarte A
    Brain Res; 2016 Jul; 1642():226-237. PubMed ID: 27038756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down modulation of alpha power and pattern similarity for threatening representations in visual short-term memory.
    Kuo BC; Li CH; Lin SH; Hu SH; Yeh YY
    Neuropsychologia; 2017 Nov; 106():21-30. PubMed ID: 28887064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the content of visual short-term memory under distraction in occipital and parietal areas.
    Bettencourt KC; Xu Y
    Nat Neurosci; 2016 Jan; 19(1):150-7. PubMed ID: 26595654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased visual task difficulty enhances attentional capture by both visual and auditory distractor stimuli.
    Sugimoto F; Katayama J
    Brain Res; 2017 Jun; 1664():55-62. PubMed ID: 28377160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.
    Parks NA; Hilimire MR; Corballis PM
    J Cogn Neurosci; 2011 May; 23(5):1113-24. PubMed ID: 20146614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age group and individual differences in attentional orienting dissociate neural mechanisms of encoding and maintenance in visual STM.
    Shimi A; Kuo BC; Astle DE; Nobre AC; Scerif G
    J Cogn Neurosci; 2014 Apr; 26(4):864-77. PubMed ID: 24236697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemifield Crossings during Multiple Object Tracking Affect Task Performance and Steady-State Visual Evoked Potentials.
    Minami T; Shinkai T; Nakauchi S
    Neuroscience; 2019 Jun; 409():162-168. PubMed ID: 31034975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociable mechanisms underlying individual differences in visual working memory capacity.
    Gulbinaite R; Johnson A; de Jong R; Morey CC; van Rijn H
    Neuroimage; 2014 Oct; 99():197-206. PubMed ID: 24878830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual short-term memory load reduces retinotopic cortex response to contrast.
    Konstantinou N; Bahrami B; Rees G; Lavie N
    J Cogn Neurosci; 2012 Nov; 24(11):2199-210. PubMed ID: 22905823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searching for targets within the spatial layout of visual short-term memory.
    Kuo BC; Rao A; Lepsien J; Nobre AC
    J Neurosci; 2009 Jun; 29(25):8032-8. PubMed ID: 19553443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Too little, too late, and in the wrong place: Alpha band activity does not reflect an active mechanism of selective attention.
    Antonov PA; Chakravarthi R; Andersen SK
    Neuroimage; 2020 Oct; 219():117006. PubMed ID: 32485307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interplay of top-down attention with affective codes during visual short-term memory maintenance.
    Kuo BC; Lin SH; Yeh YY
    Cortex; 2018 Jun; 103():55-70. PubMed ID: 29554542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.