BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28642757)

  • 1. The Fungal Pathogen
    Gerwien F; Safyan A; Wisgott S; Brunke S; Kasper L; Hube B
    Front Microbiol; 2017; 8():1055. PubMed ID: 28642757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferric reductase-related proteins mediate fungal heme acquisition.
    Roy U; Yaish S; Weissman Z; Pinsky M; Dey S; Horev G; Kornitzer D
    Elife; 2022 Oct; 11():. PubMed ID: 36200752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.
    Yu Q; Dong Y; Xu N; Qian K; Chen Y; Zhang B; Xing L; Li M
    FEMS Yeast Res; 2014 Nov; 14(7):1037-47. PubMed ID: 25130162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors.
    Baek YU; Li M; Davis DA
    Eukaryot Cell; 2008 Jul; 7(7):1168-79. PubMed ID: 18503007
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kumar K; Askari F; Sahu MS; Kaur R
    Microorganisms; 2019 Jan; 7(2):. PubMed ID: 30704135
    [No Abstract]   [Full Text] [Related]  

  • 8. Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper.
    Morrissey JA; Williams PH; Cashmore AM
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():485-492. PubMed ID: 8868423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Serum Albumin Facilitates Heme-Iron Utilization by Fungi.
    Pinsky M; Roy U; Moshe S; Weissman Z; Kornitzer D
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant.
    Hammacott JE; Williams PH; Cashmore AM
    Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():869-876. PubMed ID: 10784045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.
    Knight SA; Vilaire G; Lesuisse E; Dancis A
    Infect Immun; 2005 Sep; 73(9):5482-92. PubMed ID: 16113264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.
    Jeeves RE; Mason RP; Woodacre A; Cashmore AM
    Yeast; 2011 Sep; 28(9):629-44. PubMed ID: 21823165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar Sensing and Signaling in
    Van Ende M; Wijnants S; Van Dijck P
    Front Microbiol; 2019; 10():99. PubMed ID: 30761119
    [No Abstract]   [Full Text] [Related]  

  • 15. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans.
    Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK
    Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.
    Cuéllar-Cruz M; Castaño I; Arroyo-Helguera O; De Las Peñas A
    Mem Inst Oswaldo Cruz; 2009 Jul; 104(4):649-54. PubMed ID: 19722092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence.
    Xu N; Qian K; Dong Y; Chen Y; Yu Q; Zhang B; Xing L; Li M
    Res Microbiol; 2014 Apr; 165(3):252-61. PubMed ID: 24631590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata.
    Srivastava VK; Suneetha KJ; Kaur R
    Biochem J; 2014 Oct; 463(1):103-14. PubMed ID: 24987864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida glabrata: a deadly companion?
    Bolotin-Fukuhara M; Fairhead C
    Yeast; 2014 Aug; 31(8):279-88. PubMed ID: 24861573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.