These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28643001)

  • 1. Prediction of self-assemblies of sodium dodecyl sulfate and fragrance additives using coarse-grained force fields.
    Yang C; Shen Z; Wu L; Tang H; Zhao L; Cao F; Sun H
    J Mol Model; 2017 Jul; 23(7):211. PubMed ID: 28643001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.
    Ruiz-Morales Y; Romero-Martínez A
    J Phys Chem B; 2018 Apr; 122(14):3931-3943. PubMed ID: 29533651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained molecular dynamics simulation of self-assembly and surface adsorption of ionic surfactants using an implicit water model.
    Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1262-71. PubMed ID: 25565113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes of a sodium dodecyl sulfate (SDS) micelle induced by alcohol molecules.
    Méndez-Bermúdez JG; Dominguez H
    J Mol Model; 2016 Jan; 22(1):33. PubMed ID: 26768159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-bulk partition of surfactants predicted by molecular dynamics simulations.
    Yang C; Sun H
    J Phys Chem B; 2014 Sep; 118(36):10695-703. PubMed ID: 25158083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Prediction of the Structure and Viscosity of Aqueous Micellar Solutions of Ionic Surfactants: A Combined Approach Based on Coarse-Grained MARTINI Simulations Followed by Reverse-Mapped All-Atom Molecular Dynamics Simulations.
    Peroukidis SD; Tsalikis DG; Noro MG; Stott IP; Mavrantzas VG
    J Chem Theory Comput; 2020 May; 16(5):3363-3372. PubMed ID: 32268064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics.
    Levine BG; LeBard DN; DeVane R; Shinoda W; Kohlmeyer A; Klein ML
    J Chem Theory Comput; 2011 Dec; 7(12):4135-45. PubMed ID: 26598358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field.
    Tang X; Koenig PH; Larson RG
    J Phys Chem B; 2014 Apr; 118(14):3864-80. PubMed ID: 24620851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations.
    Mao R; Lee MT; Vishnyakov A; Neimark AV
    J Phys Chem B; 2015 Sep; 119(35):11673-83. PubMed ID: 26241704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained force field for simulating polymer-tethered silsesquioxane self-assembly in solution.
    Chan ER; Striolo A; McCabe C; Cummings PT; Glotzer SC
    J Chem Phys; 2007 Sep; 127(11):114102. PubMed ID: 17887823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the interleukin 8 protein with a sodium dodecyl sulfate micelle: A computer simulation study.
    Dominguez H
    J Mol Model; 2017 Jul; 23(7):210. PubMed ID: 28643000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the Alzheimer's Aβ40 peptide in SDS micelles using molecular dynamics simulations.
    Jalili S; Akhavan M
    Biophys Chem; 2011 Jan; 153(2-3):179-86. PubMed ID: 21183271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentials of mean force and escape times of surfactants from micelles and hydrophobic surfaces using molecular dynamics simulations.
    Yuan F; Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1336-43. PubMed ID: 25560633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil-water interfaces with surfactants: A systematic approach to determine coarse-grained model parameters.
    Vu TV; Papavassiliou DV
    J Chem Phys; 2018 May; 148(20):204704. PubMed ID: 29865808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion forces.
    Lukanov B; Firoozabadi A
    Langmuir; 2014 Jun; 30(22):6373-83. PubMed ID: 24832546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Coarse-Grained Force Field Parameterized for MgCl
    Gong Z; Sun H
    J Chem Inf Model; 2017 Jul; 57(7):1599-1608. PubMed ID: 28657310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of micelle/water and liposome/water partition coefficients based on molecular dynamics simulations, COSMO-RS, and COSMOmic.
    Ingram T; Storm S; Kloss L; Mehling T; Jakobtorweihen S; Smirnova I
    Langmuir; 2013 Mar; 29(11):3527-37. PubMed ID: 23398189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.