BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28643141)

  • 1. Estimation of the effective yield properties of human trabecular bone using nonlinear micro-finite element analyses.
    Wili P; Maquer G; Panyasantisuk J; Zysset PK
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1925-1936. PubMed ID: 28643141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of boundary conditions on yield properties of human femoral trabecular bone.
    Panyasantisuk J; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1043-53. PubMed ID: 26517986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses.
    Panyasantisuk J; Pahr DH; Gross T; Zysset PK
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
    Werner B; Ovesy M; Zysset PK
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3188. PubMed ID: 30786166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction.
    Sabet FA; Jin O; Koric S; Jasiuk I
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2941. PubMed ID: 29168345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure.
    Stipsitz M; Zysset PK; Pahr DH
    Biomech Model Mechanobiol; 2020 Jun; 19(3):861-874. PubMed ID: 31749070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach.
    Levrero-Florencio F; Margetts L; Sales E; Xie S; Manda K; Pankaj P
    J Mech Behav Biomed Mater; 2016 Aug; 61():384-396. PubMed ID: 27108348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified boundary conditions alter cortical-trabecular load sharing at the distal radius; A multiscale finite element analysis.
    Johnson JE; Troy KL
    J Biomech; 2018 Jan; 66():180-185. PubMed ID: 29137724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear homogenisation of trabecular bone: Effect of solid phase constitutive model.
    Levrero-Florencio F; Manda K; Margetts L; Pankaj P
    Proc Inst Mech Eng H; 2017 May; 231(5):405-414. PubMed ID: 28427317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis.
    Wen XX; Xu C; Zong CL; Feng YF; Ma XY; Wang FQ; Yan YB; Lei W
    J Mech Behav Biomed Mater; 2016 Jul; 60():468-475. PubMed ID: 26999702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.