BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28643141)

  • 21. Biaxial failure behavior of bovine tibial trabecular bone.
    Niebur GL; Feldstein MJ; Keaveny TM
    J Biomech Eng; 2002 Dec; 124(6):699-705. PubMed ID: 12596638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations.
    Gross T; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2013 Aug; 12(4):793-800. PubMed ID: 23053593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone.
    Schwiedrzik J; Gross T; Bina M; Pretterklieber M; Zysset P; Pahr D
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02739. PubMed ID: 26224581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy of osseointegrated screw-bone construct stiffness and peri-implant loading predicted by homogenized FE models relative to micro-FE models.
    Synek A; Ortner L; Pahr DH
    J Mech Behav Biomed Mater; 2023 Apr; 140():105740. PubMed ID: 36863197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probabilistic finite element analysis of a craniofacial finite element model.
    Berthaume MA; Dechow PC; Iriarte-Diaz J; Ross CF; Strait DS; Wang Q; Grosse IR
    J Theor Biol; 2012 May; 300():242-53. PubMed ID: 22306513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations.
    Verhulp E; van Rietbergen B; Müller R; Huiskes R
    J Biomech; 2008; 41(7):1479-85. PubMed ID: 18423473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear viscoelastic characterization of bovine trabecular bone.
    Manda K; Wallace RJ; Xie S; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2017 Feb; 16(1):173-189. PubMed ID: 27440127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.
    Goda I; Ganghoffer JF
    J Mech Behav Biomed Mater; 2015 Nov; 51():99-118. PubMed ID: 26232945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions.
    Hammond MA; Wallace JM; Allen MR; Siegmund T
    Biomech Model Mechanobiol; 2018 Apr; 17(2):605-614. PubMed ID: 29139053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone - An experimental and finite element study.
    Ojanen X; Tanska P; Malo MKH; Isaksson H; Väänänen SP; Koistinen AP; Grassi L; Magnusson SP; Ribel-Madsen SM; Korhonen RK; Jurvelin JS; Töyräs J
    J Biomech; 2017 Dec; 65():96-105. PubMed ID: 29108850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.