These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 28643174)
1. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Luo Y; Thompson WK; Herr TM; Zeng Z; Berendsen MA; Jonnalagadda SR; Carson MB; Starren J Drug Saf; 2017 Nov; 40(11):1075-1089. PubMed ID: 28643174 [TBL] [Abstract][Full Text] [Related]
2. Adverse drug event detection using natural language processing: A scoping review of supervised learning methods. Murphy RM; Klopotowska JE; de Keizer NF; Jager KJ; Leopold JH; Dongelmans DA; Abu-Hanna A; Schut MC PLoS One; 2023; 18(1):e0279842. PubMed ID: 36595517 [TBL] [Abstract][Full Text] [Related]
3. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges. Wong A; Plasek JM; Montecalvo SP; Zhou L Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988 [TBL] [Abstract][Full Text] [Related]
4. Extracting adverse drug events from clinical Notes: A systematic review of approaches used. Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081 [TBL] [Abstract][Full Text] [Related]
5. On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions. Oronoz M; Gojenola K; Pérez A; de Ilarraza AD; Casillas A J Biomed Inform; 2015 Aug; 56():318-32. PubMed ID: 26141794 [TBL] [Abstract][Full Text] [Related]
6. Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0). Jagannatha A; Liu F; Liu W; Yu H Drug Saf; 2019 Jan; 42(1):99-111. PubMed ID: 30649735 [TBL] [Abstract][Full Text] [Related]
7. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding. Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736 [TBL] [Abstract][Full Text] [Related]
8. ADE Eval: An Evaluation of Text Processing Systems for Adverse Event Extraction from Drug Labels for Pharmacovigilance. Bayer S; Clark C; Dang O; Aberdeen J; Brajovic S; Swank K; Hirschman L; Ball R Drug Saf; 2021 Jan; 44(1):83-94. PubMed ID: 33006728 [TBL] [Abstract][Full Text] [Related]
9. Natural Language Processing for EHR-Based Computational Phenotyping. Zeng Z; Deng Y; Li X; Naumann T; Luo Y IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):139-153. PubMed ID: 29994486 [TBL] [Abstract][Full Text] [Related]
10. A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis. Young IJB; Luz S; Lone N Int J Med Inform; 2019 Dec; 132():103971. PubMed ID: 31630063 [TBL] [Abstract][Full Text] [Related]
11. Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques. Kim S; Kang T; Chung TK; Choi Y; Hong Y; Jung K; Lee H Drug Saf; 2023 Aug; 46(8):781-795. PubMed ID: 37330415 [TBL] [Abstract][Full Text] [Related]
12. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer. Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013 [TBL] [Abstract][Full Text] [Related]
13. Learning temporal weights of clinical events using variable importance. Zhao J; Henriksson A BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993 [TBL] [Abstract][Full Text] [Related]
14. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Sarker A; Gonzalez G J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103 [TBL] [Abstract][Full Text] [Related]
15. Artificial Intelligent Context-Aware Machine-Learning Tool to Detect Adverse Drug Events from Social Media Platforms. Roosan D; Law AV; Roosan MR; Li Y J Med Toxicol; 2022 Oct; 18(4):311-320. PubMed ID: 36097239 [TBL] [Abstract][Full Text] [Related]
16. Automated System to Capture Patient Symptoms From Multitype Japanese Clinical Texts: Retrospective Study. Nishiyama T; Yamaguchi A; Han P; Pereira LWK; Otsuki Y; Andrade GHB; Kudo N; Yada S; Wakamiya S; Aramaki E; Takada M; Toi M JMIR Med Inform; 2024 Sep; 12():e58977. PubMed ID: 39316418 [TBL] [Abstract][Full Text] [Related]
17. Towards Drug Safety Surveillance and Pharmacovigilance: Current Progress in Detecting Medication and Adverse Drug Events from Electronic Health Records. Liu F; Jagannatha A; Yu H Drug Saf; 2019 Jan; 42(1):95-97. PubMed ID: 30649734 [No Abstract] [Full Text] [Related]
18. Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets. Li Y; Tao W; Li Z; Sun Z; Li F; Fenton S; Xu H; Tao C J Biomed Inform; 2024 Apr; 152():104621. PubMed ID: 38447600 [TBL] [Abstract][Full Text] [Related]
19. Adverse drug event notification on a semantic interoperability framework. Krahn T; Eichelberg M; Müller F; Gönül S; Laleci Erturkmen GB; Sinaci AA; Appelrath HJ Stud Health Technol Inform; 2014; 205():111-5. PubMed ID: 25160156 [TBL] [Abstract][Full Text] [Related]
20. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]