These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 28643343)
1. Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families. Dimitriou PS; Denesyuk A; Takahashi S; Yamashita S; Johnson MS; Nakayama T; Denessiouk K Proteins; 2017 Oct; 85(10):1845-1855. PubMed ID: 28643343 [TBL] [Abstract][Full Text] [Related]
2. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. Denesyuk A; Dimitriou PS; Johnson MS; Nakayama T; Denessiouk K PLoS One; 2020; 15(2):e0229376. PubMed ID: 32084230 [TBL] [Abstract][Full Text] [Related]
3. Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes. Dimitriou PS; Denesyuk AI; Nakayama T; Johnson MS; Denessiouk K Protein Sci; 2019 Feb; 28(2):344-364. PubMed ID: 30311984 [TBL] [Abstract][Full Text] [Related]
4. The alpha/beta hydrolase fold. Ollis DL; Cheah E; Cygler M; Dijkstra B; Frolow F; Franken SM; Harel M; Remington SJ; Silman I; Schrag J Protein Eng; 1992 Apr; 5(3):197-211. PubMed ID: 1409539 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Suzuki K; Hori A; Kawamoto K; Thangudu RR; Ishida T; Igarashi K; Samejima M; Yamada C; Arakawa T; Wakagi T; Koseki T; Fushinobu S Proteins; 2014 Oct; 82(10):2857-67. PubMed ID: 25066066 [TBL] [Abstract][Full Text] [Related]
6. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Amara AA; Rehm BH Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616 [TBL] [Abstract][Full Text] [Related]
8. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794 [TBL] [Abstract][Full Text] [Related]
10. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure. Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit Branch of the nitrilase superfamily. Gordon RD; Qiu W; Romanov V; Lam K; Soloveychik M; Benetteraj D; Battaile KP; Chirgadze YN; Pai EF; Chirgadze NY J Biomol Struct Dyn; 2013 Oct; 31(10):1057-65. PubMed ID: 23607706 [TBL] [Abstract][Full Text] [Related]
13. Amino acid function relates to its embedded protein microenvironment: A study on disulfide-bridged cystine. Bhatnagar A; Apostol MI; Bandyopadhyay D Proteins; 2016 Nov; 84(11):1576-1589. PubMed ID: 27410223 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis of potential catalytic residues in 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase, and hypothesis on the catalytic mechanism of 2,4-dioxygenolytic ring cleavage. Fischer F; Fetzner S FEMS Microbiol Lett; 2000 Sep; 190(1):21-7. PubMed ID: 10981684 [TBL] [Abstract][Full Text] [Related]
15. Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad. Aramini JM; Rossi P; Huang YJ; Zhao L; Jiang M; Maglaqui M; Xiao R; Locke J; Nair R; Rost B; Acton TB; Inouye M; Montelione GT Biochemistry; 2008 Sep; 47(37):9715-7. PubMed ID: 18715016 [TBL] [Abstract][Full Text] [Related]
16. Alteration of substrate specificities of thermophilic α/β hydrolases through domain swapping and domain interface optimization. Zhou X; Wang H; Zhang Y; Gao L; Feng Y Acta Biochim Biophys Sin (Shanghai); 2012 Dec; 44(12):965-73. PubMed ID: 23099882 [TBL] [Abstract][Full Text] [Related]
17. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
18. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis. Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880 [TBL] [Abstract][Full Text] [Related]
19. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]