These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Exploring Potential Energy Surfaces of Large Systems with Artificial Force Induced Reaction Method in Combination with ONIOM and Microiteration. Maeda S; Abe E; Hatanaka M; Taketsugu T; Morokuma K J Chem Theory Comput; 2012 Dec; 8(12):5058-63. PubMed ID: 26593196 [TBL] [Abstract][Full Text] [Related]
4. An Automated and Systematic Transition Structure Explorer in Large Flexible Molecular Systems Based on Combined Global Reaction Route Mapping and Microiteration Methods. Maeda S; Ohno K; Morokuma K J Chem Theory Comput; 2009 Oct; 5(10):2734-43. PubMed ID: 26631786 [TBL] [Abstract][Full Text] [Related]
5. Roles of Closed- and Open-Loop Conformations in Large-Scale Structural Transitions of l-Lactate Dehydrogenase. Suzuki K; Maeda S; Morokuma K ACS Omega; 2019 Jan; 4(1):1178-1184. PubMed ID: 31459393 [TBL] [Abstract][Full Text] [Related]
6. Conical Intersection Optimization Using Composed Steps Inside the ONIOM(QM:MM) Scheme: CASSCF:UFF Implementation with Microiterations. Ruiz-Barragan S; Morokuma K; Blancafort L J Chem Theory Comput; 2015 Apr; 11(4):1585-94. PubMed ID: 26574368 [TBL] [Abstract][Full Text] [Related]
7. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
8. Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions. Liu H; Lu Z; Cisneros GA; Yang W J Chem Phys; 2004 Jul; 121(2):697-706. PubMed ID: 15260596 [TBL] [Abstract][Full Text] [Related]
9. QM/MM Reweighting Free Energy SCF for Geometry Optimization on Extensive Free Energy Surface of Enzymatic Reaction. Kosugi T; Hayashi S J Chem Theory Comput; 2012 Jan; 8(1):322-34. PubMed ID: 26592893 [TBL] [Abstract][Full Text] [Related]
10. High-Efficiency Microiterative Optimization in QM/MM Simulations of Large Flexible Systems. Zhang Y; Xie P; He X; Han K J Chem Theory Comput; 2016 Sep; 12(9):4632-43. PubMed ID: 27505170 [TBL] [Abstract][Full Text] [Related]
11. Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. Vreven T; Morokuma K; Farkas O; Schlegel HB; Frisch MJ J Comput Chem; 2003 Apr; 24(6):760-9. PubMed ID: 12666168 [TBL] [Abstract][Full Text] [Related]
12. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
13. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis. Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314 [TBL] [Abstract][Full Text] [Related]
14. Curvature correction for microiterative optimizations with QM/MM electronic embedding. Rokob TA; Rulíšek L J Comput Chem; 2012 May; 33(12):1197-206. PubMed ID: 22344958 [TBL] [Abstract][Full Text] [Related]
15. Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution. Várnai C; Bernstein N; Mones L; Csányi G J Phys Chem B; 2013 Oct; 117(40):12202-11. PubMed ID: 24033146 [TBL] [Abstract][Full Text] [Related]
16. Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation. Caprasecca S; Jurinovich S; Viani L; Curutchet C; Mennucci B J Chem Theory Comput; 2014 Apr; 10(4):1588-98. PubMed ID: 26580371 [TBL] [Abstract][Full Text] [Related]
17. molUP: A VMD plugin to handle QM and ONIOM calculations using the gaussian software. S Fernandes H; Ramos MJ; M F S A Cerqueira N J Comput Chem; 2018 Jul; 39(19):1344-1353. PubMed ID: 29464735 [TBL] [Abstract][Full Text] [Related]
18. A multicore QM/MM approach for the geometry optimization of chromophore aggregate in protein. Kiyota Y; Hasegawa JY; Fujimoto K; Swerts B; Nakatsuji H J Comput Chem; 2009 Jun; 30(8):1351-9. PubMed ID: 19009605 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic Potential-Based Method of Balancing Charge Transfer Across ONIOM QM:QM Boundaries. Jovan Jose KV; Raghavachari K J Chem Theory Comput; 2014 Oct; 10(10):4351-9. PubMed ID: 26588132 [TBL] [Abstract][Full Text] [Related]
20. Computational Catalysis Using the Artificial Force Induced Reaction Method. Sameera WM; Maeda S; Morokuma K Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]