These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28643353)

  • 21. Improved constrained optimization method for reaction-path determination in the generalized hybrid orbital quantum mechanical/molecular mechanical calculations.
    Jung J; Re S; Sugita Y; Ten-no S
    J Chem Phys; 2013 Jan; 138(4):044106. PubMed ID: 23387567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein Free Energy Corrections in ONIOM QM:MM Modeling: A Case Study for Isopenicillin N Synthase (IPNS).
    Kawatsu T; Lundberg M; Morokuma K
    J Chem Theory Comput; 2011 Feb; 7(2):390-401. PubMed ID: 26596161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge Transfer Across ONIOM QM:QM Boundaries: The Impact of Model System Preparation.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2010 Oct; 6(10):3131-6. PubMed ID: 26616775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A combined ONIOM quantum chemical-molecular dynamics study of zinc-uracil bond breaking in yeast cytosine deaminase.
    Yao L; Yan H; Cukier RI
    J Phys Chem B; 2006 Dec; 110(51):26320-6. PubMed ID: 17181291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Geometry Optimizations on QM-Cluster and QM/MM Studies of Reaction Energies in Proteins.
    Sumner S; Söderhjelm P; Ryde U
    J Chem Theory Comput; 2013 Sep; 9(9):4205-14. PubMed ID: 26592409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.
    Hayashi S; Uchida Y; Hasegawa T; Higashi M; Kosugi T; Kamiya M
    Annu Rev Phys Chem; 2017 May; 68():135-154. PubMed ID: 28463655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring potential energy surfaces for chemical reactions: an overview of some practical methods.
    Schlegel HB
    J Comput Chem; 2003 Sep; 24(12):1514-27. PubMed ID: 12868114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme.
    Kanematsu Y; Tachikawa M
    J Chem Phys; 2014 Nov; 141(18):185101. PubMed ID: 25399161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding cross-boundary events in ONIOM QM:QM' calculations.
    Lundberg M
    J Comput Chem; 2012 Feb; 33(4):406-15. PubMed ID: 22109102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A QM/QM multilayer composite methodology: The ONIOM correlation consistent composite approach (ONIOM-ccCA).
    Das SR; Williams TG; Drummond ML; Wilson AK
    J Phys Chem A; 2010 Sep; 114(34):9394-7. PubMed ID: 20701242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced QM/MM sampling for free energy calculation of chemical reactions: A case study of double proton transfer.
    Xie L; Cheng H; Fang D; Chen ZN; Yang M
    J Chem Phys; 2019 Jan; 150(4):044111. PubMed ID: 30709281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multicentered approach to integrated QM/QM calculations. Applications to multiply hydrogen bonded systems.
    Hopkins BW; Tschumper GS
    J Comput Chem; 2003 Oct; 24(13):1563-8. PubMed ID: 12926000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative study of various computational approaches in calculating the structure of pyridoxal 5'-phosphate (PLP)-dependent beta-lyase protein. The importance of protein environment.
    Prabhakar R; Morokuma K; Musaev DG
    J Comput Chem; 2005 Apr; 26(5):443-6. PubMed ID: 15688436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Path Integral Simulations of Proton Transfer Reactions in Aqueous Solution Using Combined QM/MM Potentials.
    Major DT; Garcia-Viloca M; Gao J
    J Chem Theory Comput; 2006 Mar; 2(2):236-45. PubMed ID: 26626510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate Reaction Energies in Proteins Obtained by Combining QM/MM and Large QM Calculations.
    Hu L; Söderhjelm P; Ryde U
    J Chem Theory Comput; 2013 Jan; 9(1):640-9. PubMed ID: 26589061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A General Boundary Potential for Hybrid QM/MM Simulations of Solvated Biomolecular Systems.
    Benighaus T; Thiel W
    J Chem Theory Comput; 2009 Nov; 5(11):3114-28. PubMed ID: 26609991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Computational Research Protocol to Survey Free Energy Surface for Solution Chemical Reaction in the QM/MM Framework: The FEG-ER Methodology and Its Application to Isomerization Reaction of Glycine in Aqueous Solution.
    Takenaka N; Kitamura Y; Nagaoka M
    J Phys Chem B; 2016 Mar; 120(8):2001-11. PubMed ID: 26794718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase.
    Liao RZ; Thiel W
    J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating steepest-descent reaction pathways for large molecules.
    Hratchian HP; Frisch MJ
    J Chem Phys; 2011 May; 134(20):204103. PubMed ID: 21639420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.