These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 28643452)

  • 1. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy.
    Song G; Cheng L; Chao Y; Yang K; Liu Z
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28643452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection.
    Pan Y; Tang W; Fan W; Zhang J; Chen X
    Chem Soc Rev; 2022 Nov; 51(23):9759-9830. PubMed ID: 36354107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Hypoxia via Nanomaterials Chemistry for Efficient Treatment of Solid Tumors.
    Liu Y; Jiang Y; Zhang M; Tang Z; He M; Bu W
    Acc Chem Res; 2018 Oct; 51(10):2502-2511. PubMed ID: 30234960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy.
    Chao Y; Wang G; Liang C; Yi X; Zhong X; Liu J; Gao M; Yang K; Cheng L; Liu Z
    Small; 2016 Aug; 12(29):3967-75. PubMed ID: 27345460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional high-
    Chen J; Dong H; Bai L; Li L; Chen S; Tian X; Pan Y
    J Mater Chem B; 2022 Mar; 10(9):1328-1342. PubMed ID: 35018941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy.
    Song G; Ji C; Liang C; Song X; Yi X; Dong Z; Yang K; Liu Z
    Biomaterials; 2017 Jan; 112():257-263. PubMed ID: 27768978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation-responsive scintillating nanotheranostics for reduced hypoxic radioresistance under ROS/NO-mediated tumor microenvironment regulation.
    Dou Y; Liu Y; Zhao F; Guo Y; Li X; Wu M; Chang J; Yu C
    Theranostics; 2018; 8(21):5870-5889. PubMed ID: 30613268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications.
    Arif M; Nawaz AF; Ullah Khan S; Mueen H; Rashid F; Hemeg HA; Rauf A
    Heliyon; 2023 Jun; 9(6):e17252. PubMed ID: 37389057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of recent nanotechnology in enhancing the efficacy of radiation therapy.
    Bergs JW; Wacker MG; Hehlgans S; Piiper A; Multhoff G; Rödel C; Rödel F
    Biochim Biophys Acta; 2015 Aug; 1856(1):130-43. PubMed ID: 26142869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of nanomedicine in radiotherapy sensitization.
    Song X; Sun Z; Li L; Zhou L; Yuan S
    Front Oncol; 2023; 13():1088878. PubMed ID: 36874097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely Effective Chemoradiotherapy by Inducing Immunogenic Cell Death and Radio-Triggered Drug Release under Hypoxia Alleviation.
    Zhu C; Guo X; Luo L; Wu Z; Luo Z; Jiang M; Zhang J; Qin B; Shi Y; Lou Y; Qiu Y; You J
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46536-46547. PubMed ID: 31751119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced nanomaterials targeting hypoxia to enhance radiotherapy.
    Li J; Shang W; Li Y; Fu S; Tian J; Lu L
    Int J Nanomedicine; 2018; 13():5925-5936. PubMed ID: 30319257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy.
    Zeng L; Cao Y; He L; Ding S; Bian XW; Tian G
    J Mater Chem B; 2021 Jan; 9(2):208-227. PubMed ID: 33215626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial-mediated internal radioisotope therapy.
    Pei P; Liu T; Shen W; Liu Z; Yang K
    Mater Horiz; 2021 May; 8(5):1348-1366. PubMed ID: 34846446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating hypoxia inducible factor-1 by nanomaterials for effective cancer therapy.
    Sun Y; Zhou Z; Yang S; Yang H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jan; 14(1):e1766. PubMed ID: 34713633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy.
    Gao M; Liang C; Song X; Chen Q; Jin Q; Wang C; Liu Z
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28722140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scope of nanotechnology-based radiation therapy and thermotherapy methods in cancer treatment.
    Bakht MK; Sadeghi M; Pourbaghi-Masouleh M; Tenreiro C
    Curr Cancer Drug Targets; 2012 Oct; 12(8):998-1015. PubMed ID: 22809233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy.
    Zhang C; Yan L; Gu Z; Zhao Y
    Chem Sci; 2019 Aug; 10(29):6932-6943. PubMed ID: 31588260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics.
    Fan W; Tang W; Lau J; Shen Z; Xie J; Shi J; Chen X
    Adv Mater; 2019 Mar; 31(12):e1806381. PubMed ID: 30698854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Albumin-Templated Manganese Dioxide Nanoparticles for Enhanced Radioisotope Therapy.
    Tian L; Chen Q; Yi X; Chen J; Liang C; Chao Y; Yang K; Liu Z
    Small; 2017 Jul; 13(25):. PubMed ID: 28544324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.