BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 28643475)

  • 21. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature.
    Karabasz A; Bzowska M; Szczepanowicz K
    Int J Nanomedicine; 2020; 15():8673-8696. PubMed ID: 33192061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocarriers as an emerging platform for cancer therapy.
    Peer D; Karp JM; Hong S; Farokhzad OC; Margalit R; Langer R
    Nat Nanotechnol; 2007 Dec; 2(12):751-60. PubMed ID: 18654426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery.
    Koning GA; Krijger GC
    Anticancer Agents Med Chem; 2007 Jul; 7(4):425-40. PubMed ID: 17630918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications.
    Saadh MJ; Mustafa MA; Kumar A; Alamir HTA; Kumar A; Khudair SA; Faisal A; Alubiady MHS; Jalal SS; Shafik SS; Ahmad I; Khry FAF; Abosaoda MK
    AAPS PharmSciTech; 2024 Jun; 25(6):140. PubMed ID: 38890191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomedicine: An effective tool in cancer therapy.
    Aftab S; Shah A; Nadhman A; Kurbanoglu S; Aysıl Ozkan S; Dionysiou DD; Shukla SS; Aminabhavi TM
    Int J Pharm; 2018 Apr; 540(1-2):132-149. PubMed ID: 29427746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives.
    Cadete A; Alonso MJ
    Nanomedicine (Lond); 2016 Sep; 11(17):2341-57. PubMed ID: 27526874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanotechnology applied to overcome tumor drug resistance.
    Gao Z; Zhang L; Sun Y
    J Control Release; 2012 Aug; 162(1):45-55. PubMed ID: 22698943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanocarrier Based Advances in Drug Delivery to Tumor: An Overview.
    Jain A; Kumari R; Tiwari A; Verma A; Tripathi A; Shrivastava A; Jain SK
    Curr Drug Targets; 2018; 19(13):1498-1518. PubMed ID: 29384060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery.
    Sharker SM
    Int J Nanomedicine; 2019; 14():9983-9993. PubMed ID: 31908454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer.
    Li C; Ge X; Wang L
    Biomed Pharmacother; 2017 Feb; 86():628-636. PubMed ID: 28027539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel size-tunable nanocarrier system for targeted anticancer drug delivery.
    Li Y; Xiao K; Luo J; Lee J; Pan S; Lam KS
    J Control Release; 2010 Jun; 144(3):314-23. PubMed ID: 20211210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design considerations for nanotherapeutics in oncology.
    Stylianopoulos T; Jain RK
    Nanomedicine; 2015 Nov; 11(8):1893-907. PubMed ID: 26282377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The acceptability of nanocarriers for drug delivery in different contexts of use: perceptions of researchers and research trainees in the field of new technologies.
    Chenel V; Boissy P; Poirier MS; Cloarec JP; Patenaude J
    Int J Nanomedicine; 2015; 10():2125-37; quiz 2138-9. PubMed ID: 25844040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancements in Applications of Surface Modified Nanomaterials for Cancer Theranostics.
    Ahmad IZ; Kuddus M; Tabassum H; Ahmad A; Mabood A
    Curr Drug Metab; 2017; 18(11):983-999. PubMed ID: 28969548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinational drug delivery using nanocarriers for breast cancer treatments: A review.
    Olov N; Bagheri-Khoulenjani S; Mirzadeh H
    J Biomed Mater Res A; 2018 Aug; 106(8):2272-2283. PubMed ID: 29577607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial Molecular Machines in Nanotheranostics.
    Yu G; Yung BC; Zhou Z; Mao Z; Chen X
    ACS Nano; 2018 Jan; 12(1):7-12. PubMed ID: 29283247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-responsive dendritic core-multishell nanocarriers.
    Fleige E; Achazi K; Schaletzki K; Triemer T; Haag R
    J Control Release; 2014 Jul; 185():99-108. PubMed ID: 24768791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment.
    Naz S; Shahzad H; Ali A; Zia M
    Artif Cells Nanomed Biotechnol; 2018 Aug; 46(5):899-916. PubMed ID: 28914553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SWCNTs as novel theranostic nanocarriers for cancer diagnosis and therapy: towards safe translation to the clinics.
    Al Faraj A
    Nanomedicine (Lond); 2016 Jun; 11(11):1431-45. PubMed ID: 27172091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.