BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28643829)

  • 1. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid.
    Enami S; Colussi AJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17044-17051. PubMed ID: 28643829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    J Phys Chem A; 2018 Aug; 122(30):6303-6310. PubMed ID: 29989413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces.
    Enami S; Colussi AJ
    J Phys Chem A; 2017 Jul; 121(27):5175-5182. PubMed ID: 28635281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OH-Radical Oxidation of Surface-Active cis-Pinonic Acid at the Air-Water Interface.
    Enami S; Sakamoto Y
    J Phys Chem A; 2016 May; 120(20):3578-87. PubMed ID: 27098046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of Monoterpene Criegee Intermediates at Gas-Liquid Interfaces.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem A; 2018 Oct; 122(39):7910-7917. PubMed ID: 30180579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial vs Bulk Ozonolysis of Nerolidol.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    Environ Sci Technol; 2019 May; 53(10):5750-5757. PubMed ID: 31017766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.
    Aljawhary D; Zhao R; Lee AK; Wang C; Abbatt JP
    J Phys Chem A; 2016 Mar; 120(9):1395-407. PubMed ID: 26299576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Criegee Chemistry on Aqueous Organic Surfaces.
    Enami S; Colussi AJ
    J Phys Chem Lett; 2017 Apr; 8(7):1615-1623. PubMed ID: 28319398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance.
    Hou GL; Zhang J; Valiev M; Wang XB
    Phys Chem Chem Phys; 2017 Apr; 19(16):10676-10684. PubMed ID: 28398433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene.
    Song C; Zaveri RA; Shilling JE; Alexander ML; Newburn M
    Environ Sci Technol; 2011 Sep; 45(17):7323-9. PubMed ID: 21790137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.
    Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE
    Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water vapour effects on secondary organic aerosol formation in isoprene ozonolysis.
    Sakamoto Y; Yajima R; Inomata S; Hirokawa J
    Phys Chem Chem Phys; 2017 Jan; 19(4):3165-3175. PubMed ID: 28083573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry.
    Henry KM; Lohaus T; Donahue NM
    Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the cis-pinonic acid and its atmospheric hydrolysate participation in the atmospheric nucleation.
    Shi X; Zhao X; Zhang R; Xu F; Cheng J; Zhang Q; Wang W
    Sci Total Environ; 2019 Jul; 674():234-241. PubMed ID: 31005830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene.
    Bagchi A; Yu Y; Huang JH; Tsai CC; Hu WP; Wang CC
    Phys Chem Chem Phys; 2020 Mar; 22(12):6528-6537. PubMed ID: 32091071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criegee Intermediates React with Levoglucosan on Water.
    Enami S; Hoffmann MR; Colussi AJ
    J Phys Chem Lett; 2017 Aug; 8(16):3888-3894. PubMed ID: 28767252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the OH Oxidation of Pinonic Acid at the Air-Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS).
    Huang Y; Barraza KM; Kenseth CM; Zhao R; Wang C; Beauchamp JL; Seinfeld JH
    J Phys Chem A; 2018 Aug; 122(31):6445-6456. PubMed ID: 30011201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Kinetics of cis-Pinonic Acid with Hydroxyl Radical under Different Environmental Conditions.
    Lai C; Liu Y; Ma J; Ma Q; Chu B; He H
    J Phys Chem A; 2015 Jun; 119(25):6583-93. PubMed ID: 26017096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide.
    Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.