These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28643920)

  • 1. Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization.
    Fedore CW; Tse LYL; Nam HK; Barton KL; Hatch NE
    Orthod Craniofac Res; 2017 Jun; 20 Suppl 1():12-17. PubMed ID: 28643920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration.
    Ahn SH; Lee HJ; Kim GH
    Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo.
    Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD
    Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Growth Factor-Free Co-Culture System of Osteoblasts and Peripheral Blood Mononuclear Cells for the Evaluation of the Osteogenesis Potential of Melt-Electrowritten Polycaprolactone Scaffolds.
    Hammerl A; Diaz Cano CE; De-Juan-Pardo EM; van Griensven M; Poh PSP
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30823680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering.
    Amruthwar SS; Janorkar AV
    Dent Mater; 2013 Feb; 29(2):211-20. PubMed ID: 23127995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
    Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L
    J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes.
    Ko EK; Jeong SI; Rim NG; Lee YM; Shin H; Lee BK
    Tissue Eng Part A; 2008 Dec; 14(12):2105-19. PubMed ID: 18788980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering.
    Kanitkar A; Chen C; Smoak M; Hogan K; Scherr T; Aita G; Hayes D
    J Biomater Appl; 2015 Mar; 29(8):1075-85. PubMed ID: 25281649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomed Mater Res A; 2014 Oct; 102(10):3379-92. PubMed ID: 24132871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.
    Bonewald LF; Harris SE; Rosser J; Dallas MR; Dallas SL; Camacho NP; Boyan B; Boskey A
    Calcif Tissue Int; 2003 May; 72(5):537-47. PubMed ID: 12724828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.
    Costa PF; Vaquette C; Zhang Q; Reis RL; Ivanovski S; Hutmacher DW
    J Clin Periodontol; 2014 Mar; 41(3):283-94. PubMed ID: 24304192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering.
    Osathanon T; Giachelli CM; Somerman MJ
    Biomaterials; 2009 Sep; 30(27):4513-21. PubMed ID: 19501906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of polycaprolactone-biphasic calcium phosphate scaffolds on enhancing growth and differentiation of osteoblasts.
    Thuaksuban N; Monmaturapoj N; Luntheng T
    Biomed Mater Eng; 2018; 29(2):159-176. PubMed ID: 29457591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material.
    Bialorucki C; Subramanian G; Elsaadany M; Yildirim-Ayan E
    J Mech Behav Biomed Mater; 2014 Oct; 38():143-53. PubMed ID: 25051152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis.
    Kim JY; Jin GZ; Park IS; Kim JN; Chun SY; Park EK; Kim SY; Yoo J; Kim SH; Rhie JW; Cho DW
    Tissue Eng Part A; 2010 Jul; 16(7):2229-36. PubMed ID: 20163199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.