BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

851 related articles for article (PubMed ID: 28644004)

  • 21. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.
    Feng Y; Maity R; Whitelegge JP; Hadjikyriacou A; Li Z; Zurita-Lopez C; Al-Hadid Q; Clark AT; Bedford MT; Masson JY; Clarke SG
    J Biol Chem; 2013 Dec; 288(52):37010-25. PubMed ID: 24247247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Readers of histone methylarginine marks.
    Gayatri S; Bedford MT
    Biochim Biophys Acta; 2014 Aug; 1839(8):702-10. PubMed ID: 24583552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing.
    Schiza V; Molina-Serrano D; Kyriakou D; Hadjiantoniou A; Kirmizis A
    PLoS Genet; 2013; 9(9):e1003805. PubMed ID: 24068969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. K8 and K12 are biotinylated in human histone H4.
    Camporeale G; Shubert EE; Sarath G; Cerny R; Zempleni J
    Eur J Biochem; 2004 Jun; 271(11):2257-63. PubMed ID: 15153116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetically encoding lysine modifications on histone H4.
    Wilkins BJ; Hahn LE; Heitmüller S; Frauendorf H; Valerius O; Braus GH; Neumann H
    ACS Chem Biol; 2015 Apr; 10(4):939-44. PubMed ID: 25590375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases.
    Jain K; Jin CY; Clarke SG
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10101-10106. PubMed ID: 28874563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Posttranslational modifications of the histone 3 tail and their impact on the activity of histone lysine demethylases in vitro.
    Lohse B; Helgstrand C; Kristensen JB; Leurs U; Cloos PA; Kristensen JL; Clausen RP
    PLoS One; 2013; 8(7):e67653. PubMed ID: 23844048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes.
    Pal S; Vishwanath SN; Erdjument-Bromage H; Tempst P; Sif S
    Mol Cell Biol; 2004 Nov; 24(21):9630-45. PubMed ID: 15485929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond histone acetylation-writing and erasing histone acylations.
    Zhao S; Zhang X; Li H
    Curr Opin Struct Biol; 2018 Dec; 53():169-177. PubMed ID: 30391813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer.
    Roy A; Niharika ; Chakraborty S; Mishra J; Singh SP; Patra SK
    Prog Mol Biol Transl Sci; 2023; 197():261-302. PubMed ID: 37019596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications.
    Huang S; Litt M; Felsenfeld G
    Genes Dev; 2005 Aug; 19(16):1885-93. PubMed ID: 16103216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMTs: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation.
    Zou Y; Webb K; Perna AD; Zhang Q; Clarke S; Wang Y
    Biochemistry; 2007 Jul; 46(26):7896-906. PubMed ID: 17550233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human PAD4 regulates histone arginine methylation levels via demethylimination.
    Wang Y; Wysocka J; Sayegh J; Lee YH; Perlin JR; Leonelli L; Sonbuchner LS; McDonald CH; Cook RG; Dou Y; Roeder RG; Clarke S; Stallcup MR; Allis CD; Coonrod SA
    Science; 2004 Oct; 306(5694):279-83. PubMed ID: 15345777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A transient kinetic analysis of PRMT1 catalysis.
    Feng Y; Xie N; Jin M; Stahley MR; Stivers JT; Zheng YG
    Biochemistry; 2011 Aug; 50(32):7033-44. PubMed ID: 21736313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities.
    Zhang K; Li L; Zhu M; Wang G; Xie J; Zhao Y; Fan E; Xu L; Li E
    J Proteomics; 2015 Jan; 112():180-9. PubMed ID: 25234497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Introduction to the multi-author review on methylation in cellular physiology.
    Shechter D
    Cell Mol Life Sci; 2019 Aug; 76(15):2871-2872. PubMed ID: 31177294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysine methylation: beyond histones.
    Zhang X; Wen H; Shi X
    Acta Biochim Biophys Sin (Shanghai); 2012 Jan; 44(1):14-27. PubMed ID: 22194010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.
    Soldi M; Cuomo A; Bonaldi T
    Proteomics; 2016 Jul; 16(14):1952-4. PubMed ID: 27373704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone arginine methylation and its dynamic regulation.
    Wysocka J; Allis CD; Coonrod S
    Front Biosci; 2006 Jan; 11():344-55. PubMed ID: 16146736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4.
    Lakowski TM; Frankel A
    Biochem J; 2009 Jun; 421(2):253-61. PubMed ID: 19405910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.