These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28644423)

  • 1. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.
    Ferhan AR; Jackman JA; Sut TN; Cho NJ
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces.
    Ferhan AR; Špačková B; Jackman JA; Ma GJ; Sut TN; Homola J; Cho NJ
    Anal Chem; 2018 Nov; 90(21):12503-12511. PubMed ID: 30272950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions.
    Ferhan AR; Jackman JA; Malekian B; Xiong K; Emilsson G; Park S; Dahlin AB; Cho NJ
    Anal Chem; 2018 Jun; 90(12):7458-7466. PubMed ID: 29806449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing.
    Ferhan AR; Jackman JA; Cho NJ
    Anal Chem; 2017 Apr; 89(7):4301-4308. PubMed ID: 28293950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.
    Savarala S; Monson F; Ilies MA; Wunder SL
    Langmuir; 2011 May; 27(10):5850-61. PubMed ID: 21500811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.
    Swana KW; Camesano TA; Nagarajan R
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.
    Ferhan AR; Jackman JA; Cho NJ
    Anal Chem; 2016 Dec; 88(24):12524-12531. PubMed ID: 28193076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles.
    Kunze A; Svedhem S; Kasemo B
    Langmuir; 2009 May; 25(9):5146-58. PubMed ID: 19326873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoplasmonic sensors for biointerfacial science.
    Jackman JA; Rahim Ferhan A; Cho NJ
    Chem Soc Rev; 2017 Jun; 46(12):3615-3660. PubMed ID: 28383083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Sensor Coating and Topography on Protein and Nanoparticle Interaction with Supported Lipid Bilayers.
    Yin H; Mensch AC; Lochbaum CA; Foreman-Ortiz IU; Caudill ER; Hamers RJ; Pedersen JA
    Langmuir; 2021 Feb; 37(7):2256-2267. PubMed ID: 33560854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template.
    Jonsson MP; Jönsson P; Dahlin AB; Höök F
    Nano Lett; 2007 Nov; 7(11):3462-8. PubMed ID: 17902726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants.
    Duša F; Chen W; Witos J; Wiedmer SK
    Langmuir; 2018 May; 34(20):5889-5900. PubMed ID: 29715032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species.
    Bruzas I; Unser S; Yazdi S; Ringe E; Sagle L
    Anal Chem; 2016 Aug; 88(16):7968-74. PubMed ID: 27436204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding How Membrane Surface Charge Influences Lipid Bicelle Adsorption onto Oxide Surfaces.
    Sut TN; Jackman JA; Cho NJ
    Langmuir; 2019 Jun; 35(25):8436-8444. PubMed ID: 31141663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time nanoplasmonic sensing of three-dimensional morphological changes in a supported lipid bilayer and antimicrobial testing applications.
    Yoon BK; Park H; Zhdanov VP; Jackman JA; Cho NJ
    Biosens Bioelectron; 2021 Feb; 174():112768. PubMed ID: 33288427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual polarization interferometric and capillary electrophoretic analysis of supported lipid bilayer constructed on silica-based surface: evaluation of its anti-protein adsorption effect.
    Ho JA; Kuo TY; Yu LG
    Anal Chim Acta; 2012 Feb; 714():127-33. PubMed ID: 22244146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.