These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28644624)

  • 21. Chemically accurate protein structures: validation of protein NMR structures by comparison of measured and predicted pKa values.
    Powers N; Jensen JH
    J Biomol NMR; 2006 May; 35(1):39-51. PubMed ID: 16791739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.
    Lee J; Miller BT; Brooks BR
    Protein Sci; 2016 Jan; 25(1):231-43. PubMed ID: 26189656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benchmarking pKa Prediction Methods for Residues in Proteins.
    Stanton CL; Houk KN
    J Chem Theory Comput; 2008 Jun; 4(6):951-66. PubMed ID: 26621236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanometric design of extraordinary hydrophobic-induced pKa shifts for aspartic acid: relevance to protein mechanisms.
    Urry DW; Gowda DC; Peng S; Parker TM; Jing N; Harris RD
    Biopolymers; 1994 Jul; 34(7):889-96. PubMed ID: 8054471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins.
    Robinson AC; Majumdar A; Schlessman JL; García-Moreno E B
    Biochemistry; 2017 Jan; 56(1):212-218. PubMed ID: 28009501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
    Wang L; Li L; Alexov E
    Proteins; 2015 Dec; 83(12):2186-97. PubMed ID: 26408449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
    Gapsys V; de Groot BL
    J Chem Theory Comput; 2017 Dec; 13(12):6275-6289. PubMed ID: 29125747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins.
    Mehler EL; Guarnieri F
    Biophys J; 1999 Jul; 77(1):3-22. PubMed ID: 10388736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Empirical prediction of protein pKa values with residue mutation.
    Burger SK; Ayers PW
    J Comput Chem; 2011 Jul; 32(10):2140-8. PubMed ID: 21523791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing protein stability by altering long-range coulombic interactions.
    Grimsley GR; Shaw KL; Fee LR; Alston RW; Huyghues-Despointes BM; Thurlkill RL; Scholtz JM; Pace CN
    Protein Sci; 1999 Sep; 8(9):1843-9. PubMed ID: 10493585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of pKa shifts in proteins using a combination of molecular mechanical and continuum solvent calculations.
    Kuhn B; Kollman PA; Stahl M
    J Comput Chem; 2004 Nov; 25(15):1865-72. PubMed ID: 15376253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the NMR analysis of pKa values in the unfolded state of proteins by extrapolation to zero denaturant.
    Quijada J; López G; Versace R; Ramírez L; Tasayco ML
    Biophys Chem; 2007 Sep; 129(2-3):242-50. PubMed ID: 17611012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.
    King E; Qi R; Li H; Luo R; Aitchison E
    J Chem Theory Comput; 2021 Apr; 17(4):2541-2555. PubMed ID: 33764050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Challenges in pKa predictions for proteins: the case of Asp213 in human proteinase 3.
    Hajjar E; Dejaegere A; Reuter N
    J Phys Chem A; 2009 Oct; 113(43):11783-92. PubMed ID: 19780520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulations of proteins at constant pH with generalized Born solvent, flexible sidechains, and an effective dielectric boundary.
    Polydorides S; Simonson T
    J Comput Chem; 2013 Dec; 34(31):2742-56. PubMed ID: 24122878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge Interactions in a Highly Charge-Depleted Protein.
    Hervø-Hansen S; Højgaard C; Johansson KE; Wang Y; Wahni K; Young D; Messens J; Teilum K; Lindorff-Larsen K; Winther JR
    J Am Chem Soc; 2021 Feb; 143(6):2500-2508. PubMed ID: 33529004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alchemical determination of drug-receptor binding free energy: Where we stand and where we could move to.
    Procacci P
    J Mol Graph Model; 2017 Jan; 71():233-241. PubMed ID: 27984798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiconformation, Density Functional Theory-Based pK
    Bochevarov AD; Watson MA; Greenwood JR; Philipp DM
    J Chem Theory Comput; 2016 Dec; 12(12):6001-6019. PubMed ID: 27951674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.