BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28644840)

  • 1. Linking structure and activity in nonlinear spiking networks.
    Ocker GK; Josić K; Shea-Brown E; Buice MA
    PLoS Comput Biol; 2017 Jun; 13(6):e1005583. PubMed ID: 28644840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity.
    Zaytsev YV; Morrison A; Deger M
    J Comput Neurosci; 2015 Aug; 39(1):77-103. PubMed ID: 26041729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Universal Computations with Spikes.
    Thalmeier D; Uhlmann M; Kappen HJ; Memmesheimer RM
    PLoS Comput Biol; 2016 Jun; 12(6):e1004895. PubMed ID: 27309381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response nonlinearities in networks of spiking neurons.
    Sanzeni A; Histed MH; Brunel N
    PLoS Comput Biol; 2020 Sep; 16(9):e1008165. PubMed ID: 32941457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiking networks as efficient distributed controllers.
    Huang F; Ching S
    Biol Cybern; 2019 Apr; 113(1-2):179-190. PubMed ID: 29951907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission.
    Mongillo G; Hansel D; van Vreeswijk C
    Phys Rev Lett; 2012 Apr; 108(15):158101. PubMed ID: 22587287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks.
    Bagley BA; Bordelon B; Moseley B; Wessel R
    PLoS One; 2020; 15(2):e0229083. PubMed ID: 32092107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of network structure and cellular response on spike time correlations.
    Trousdale J; Hu Y; Shea-Brown E; Josić K
    PLoS Comput Biol; 2012; 8(3):e1002408. PubMed ID: 22457608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact computation of the maximum-entropy potential of spiking neural-network models.
    Cofré R; Cessac B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052117. PubMed ID: 25353749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks.
    Podlaski WF; Machens CK
    Neural Comput; 2024 Apr; 36(5):803-857. PubMed ID: 38658028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis.
    Napoli A; Xie J; Obeid I
    BMC Neurosci; 2014 Jan; 15():17. PubMed ID: 24443925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spiking neural network architecture for nonlinear function approximation.
    Iannella N; Back AD
    Neural Netw; 2001; 14(6-7):933-9. PubMed ID: 11665783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coding of temporally varying signals in networks of spiking neurons with global delayed feedback.
    Masuda N; Doiron B; Longtin A; Aihara K
    Neural Comput; 2005 Oct; 17(10):2139-75. PubMed ID: 16105221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry of population activity in spiking networks with low-rank structure.
    Cimeša L; Ciric L; Ostojic S
    PLoS Comput Biol; 2023 Aug; 19(8):e1011315. PubMed ID: 37549194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Belief propagation in networks of spiking neurons.
    Steimer A; Maass W; Douglas R
    Neural Comput; 2009 Sep; 21(9):2502-23. PubMed ID: 19548806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of facts and issues about neural coding by spikes.
    Cessac B; Paugam-Moisy H; Viéville T
    J Physiol Paris; 2010; 104(1-2):5-18. PubMed ID: 19925865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling fluctuations in default-mode brain network using a spiking neural network.
    Yamanishi T; Liu JQ; Nishimura H
    Int J Neural Syst; 2012 Aug; 22(4):1250016. PubMed ID: 22830966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case study on a self-organizing spiking neural network for robot navigation.
    Nichols E; McDaid LJ; Siddique NH
    Int J Neural Syst; 2010 Dec; 20(6):501-8. PubMed ID: 21117272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.
    Zhang JW; Rangan AV
    J Comput Neurosci; 2015 Apr; 38(2):355-404. PubMed ID: 25601481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks.
    Faugeras O; Veltz R; Grimbert F
    Neural Comput; 2009 Jan; 21(1):147-87. PubMed ID: 19431281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.