These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 28644952)

  • 1. ACSF3 and Mal(onate)-Adapted Mitochondria.
    Lombard DB; Zhao Y
    Cell Chem Biol; 2017 Jun; 24(6):649-650. PubMed ID: 28644952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency.
    Bowman CE; Rodriguez S; Selen Alpergin ES; Acoba MG; Zhao L; Hartung T; Claypool SM; Watkins PA; Wolfgang MJ
    Cell Chem Biol; 2017 Jun; 24(6):673-684.e4. PubMed ID: 28479296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism.
    Bowman CE; Wolfgang MJ
    Adv Biol Regul; 2019 Jan; 71():34-40. PubMed ID: 30201289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian ACSF3 protein is a malonyl-CoA synthetase that supplies the chain extender units for mitochondrial fatty acid synthesis.
    Witkowski A; Thweatt J; Smith S
    J Biol Chem; 2011 Sep; 286(39):33729-36. PubMed ID: 21846720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3.
    Monteuuis G; Suomi F; Kerätär JM; Masud AJ; Kastaniotis AJ
    Biochem J; 2017 Nov; 474(22):3783-3797. PubMed ID: 28986507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AAE13 encodes a dual-localized malonyl-CoA synthetase that is crucial for mitochondrial fatty acid biosynthesis.
    Guan X; Nikolau BJ
    Plant J; 2016 Mar; 85(5):581-93. PubMed ID: 26836315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that two covalent intermediates, phosphoryl and malonyl enzymes, are formed during malonyl-coenzyme A synthetase catalysis.
    Kim YS; Lee JK
    J Biol Chem; 1986 Dec; 261(35):16295-7. PubMed ID: 3097006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The emerging role of the mitochondrial fatty-acid synthase (mtFASII) in the regulation of energy metabolism.
    Wehbe Z; Behringer S; Alatibi K; Watkins D; Rosenblatt D; Spiekerkoetter U; Tucci S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Nov; 1864(11):1629-1643. PubMed ID: 31376476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic degradation of malonate via malonyl-CoA by Sporomusa malonica, Klebsiella oxytoca, and Rhodobacter capsulatus.
    Dehning I; Schink B
    Antonie Van Leeuwenhoek; 1994; 66(4):343-50. PubMed ID: 7710283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation.
    Colak G; Pougovkina O; Dai L; Tan M; Te Brinke H; Huang H; Cheng Z; Park J; Wan X; Liu X; Yue WW; Wanders RJ; Locasale JW; Lombard DB; de Boer VC; Zhao Y
    Mol Cell Proteomics; 2015 Nov; 14(11):3056-71. PubMed ID: 26320211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malonate metabolism in rat brain mitochondria.
    Koeppen AH; Mitzen EJ; Ammoumi AA
    Biochemistry; 1974 Aug; 13(17):3589-95. PubMed ID: 4152381
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae.
    Li S; Fu W; Su R; Zhao Y; Deng Y
    Metab Eng; 2022 Sep; 73():1-10. PubMed ID: 35643281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state kinetics of malonyl-CoA synthetase from Bradyrhizobium japonicum and evidence for malonyl-AMP formation in the reaction.
    Kim YS; Kang SW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):327-33. PubMed ID: 8297339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli.
    Moteallehi-Ardakani MH; Asad S; Marashi SA; Moghaddasi A; Zarparvar P
    Mol Biotechnol; 2023 Sep; 65(9):1508-1517. PubMed ID: 36658293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remarkably broad substrate tolerance of malonyl-CoA synthetase, an enzyme capable of intracellular synthesis of polyketide precursors.
    Pohl NL; Hans M; Lee HY; Kim YS; Cane DE; Khosla C
    J Am Chem Soc; 2001 Jun; 123(24):5822-3. PubMed ID: 11403625
    [No Abstract]   [Full Text] [Related]  

  • 16. The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies.
    Jung JW; An JH; Na KB; Kim YS; Lee W
    Protein Sci; 2000 Jul; 9(7):1294-303. PubMed ID: 10933494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assays for malonyl-coenzyme A synthase.
    Kim YS; Bang SK
    Anal Biochem; 1988 Apr; 170(1):45-9. PubMed ID: 3389517
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle.
    Cha SH; Hu Z; Chohnan S; Lane MD
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14557-62. PubMed ID: 16203972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives.
    Koirala N; Pandey RP; Thang DV; Jung HJ; Sohng JK
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1647-58. PubMed ID: 25189810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti.
    Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ
    Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.