These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28644989)

  • 21. Proteomic analysis of spontaneous mutants of Lactococcus lactis: Involvement of GAPDH and arginine deiminase pathway in H2O2 resistance.
    Rochat T; Boudebbouze S; Gratadoux JJ; Blugeon S; Gaudu P; Langella P; Maguin E
    Proteomics; 2012 Jun; 12(11):1792-805. PubMed ID: 22623348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger.
    Driessen AJ; Poolman B; Kiewiet R; Konings W
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6093-7. PubMed ID: 2819865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons.
    Larsen R; van Hijum SA; Martinussen J; Kuipers OP; Kok J
    Appl Environ Microbiol; 2008 Aug; 74(15):4768-71. PubMed ID: 18539789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arginine metabolism in lactic streptococci.
    Crow VL; Thomas TD
    J Bacteriol; 1982 Jun; 150(3):1024-32. PubMed ID: 6281231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325].
    Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic production of l-citrulline by hydrolysis of the guanidinium group of l-arginine with recombinant arginine deiminase.
    Song W; Sun X; Chen X; Liu D; Liu L
    J Biotechnol; 2015 Aug; 208():37-43. PubMed ID: 26022421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.
    del Rio B; Linares DM; Ladero V; Redruello B; Fernández M; Martin MC; Alvarez MA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):897-905. PubMed ID: 25341400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains.
    Araque I; Gil J; Carreté R; Constantí M; Bordons A; Reguant C
    Folia Microbiol (Praha); 2016 Mar; 61(2):109-18. PubMed ID: 26873388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01.
    Ni ZJ; Zhang XY; Liu F; Wang M; Hao RH; Ling PX; Zhu XQ
    Probiotics Antimicrob Proteins; 2017 Jun; 9(2):204-212. PubMed ID: 28303477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.
    Prasad SB; Ramachandran KB; Jayaraman G
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1593-607. PubMed ID: 22367612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of IrpT function in Lactococcus lactis subsp. lactis N8 results in increased nisin resistance.
    Xuanyuan Z; Wu Z; Li R; Jiang D; Su J; Xu H; Bai Y; Zhang X; Saris PE; Qiao M
    Curr Microbiol; 2010 Oct; 61(4):329-34. PubMed ID: 20213102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arginine and Citrulline Catabolic Pathways Encoded by the
    Majsnerowska M; Noens EEE; Lolkema JS
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29712874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systems-Level Analysis of the Global Regulatory Mechanism of CodY in Lactococcus lactis Metabolism and Nisin Immunity Modulation.
    Wu H; Tian K; Feng J; Qi H; Qiao J
    Appl Environ Microbiol; 2022 Mar; 88(5):e0184721. PubMed ID: 35044848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of Nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):751-61. PubMed ID: 18563651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulation of nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006; 129-132():751-61. PubMed ID: 16915685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a role of NisT in transport of the lantibiotic nisin produced by Lactococcus lactis N8.
    Qiao M; Saris PE
    FEMS Microbiol Lett; 1996 Oct; 144(1):89-93. PubMed ID: 8870256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
    Dijkstra AR; Alkema W; Starrenburg MJ; Hugenholtz J; van Hijum SA; Bron PA
    PLoS One; 2016; 11(12):e0167944. PubMed ID: 27973578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing nisin yield by engineering a small noncodding RNA anti41 and inhibiting the expression of glnR in Lactococcus lactis F44.
    Miao S; Wu H; Zhao Y; Caiyin Q; Li Y; Qiao J
    Biotechnol Lett; 2018 Jun; 40(6):941-948. PubMed ID: 29619745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AcrR1, a novel TetR/AcrR family repressor, mediates acid and antibiotic resistance and nisin biosynthesis in Lactococcus lactis F44.
    Jian P; Liu J; Li L; Song Q; Zhang D; Zhang S; Chai C; Zhao H; Zhao G; Zhu H; Qiao J
    J Dairy Sci; 2024 Sep; 107(9):6576-6591. PubMed ID: 38762103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403.
    Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J
    Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.