These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28645146)
1. Analysis of in vitro evolution reveals the underlying distribution of catalytic activity among random sequences. Pressman A; Moretti JE; Campbell GW; Müller UF; Chen IA Nucleic Acids Res; 2017 Aug; 45(14):8167-8179. PubMed ID: 28645146 [TBL] [Abstract][Full Text] [Related]
2. Ribozyme-catalyzed transcription of an active ribozyme. Wochner A; Attwater J; Coulson A; Holliger P Science; 2011 Apr; 332(6026):209-12. PubMed ID: 21474753 [TBL] [Abstract][Full Text] [Related]
6. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing. Yokobayashi Y Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502 [TBL] [Abstract][Full Text] [Related]
7. Unbiased in vitro selection reveals the unique character of the self-cleaving antigenomic HDV RNA sequence. Nehdi A; Perreault JP Nucleic Acids Res; 2006; 34(2):584-92. PubMed ID: 16432262 [TBL] [Abstract][Full Text] [Related]
8. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. Tang J; Breaker RR RNA; 1997 Aug; 3(8):914-25. PubMed ID: 9257650 [TBL] [Abstract][Full Text] [Related]
9. Rapid construction of empirical RNA fitness landscapes. Pitt JN; Ferré-D'Amaré AR Science; 2010 Oct; 330(6002):376-9. PubMed ID: 20947767 [TBL] [Abstract][Full Text] [Related]
11. A modular, bifunctional RNA that integrates itself into a target RNA. Kumar RM; Joyce GF Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9738-43. PubMed ID: 12913125 [TBL] [Abstract][Full Text] [Related]
12. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Salehi-Ashtiani K; Szostak JW Nature; 2001 Nov; 414(6859):82-4. PubMed ID: 11689947 [TBL] [Abstract][Full Text] [Related]
13. Isolation of active ribozymes from an RNA pool of random sequences using an anchored substrate RNA. Ishizaka M; Ohshima Y; Tani T Biochem Biophys Res Commun; 1995 Sep; 214(2):403-9. PubMed ID: 7545903 [TBL] [Abstract][Full Text] [Related]
14. Determination of catalytic parameters for hairpin ribozymes. DeYoung MB; Siwkowski A; Hampel A Methods Mol Biol; 1997; 74():209-20. PubMed ID: 9204436 [No Abstract] [Full Text] [Related]
15. The structure and function of catalytic RNAs. Wu Q; Huang L; Zhang Y Sci China C Life Sci; 2009 Mar; 52(3):232-44. PubMed ID: 19294348 [TBL] [Abstract][Full Text] [Related]
16. Biochemistry. The evolution of ribozyme chemistry. Wilson TJ; Lilley DM Science; 2009 Mar; 323(5920):1436-8. PubMed ID: 19286542 [No Abstract] [Full Text] [Related]
17. Systematic minimization of RNA ligase ribozyme through large-scale design-synthesis-sequence cycles. Nomura Y; Yokobayashi Y Nucleic Acids Res; 2019 Sep; 47(17):8950-8960. PubMed ID: 31504757 [TBL] [Abstract][Full Text] [Related]
18. In vitro selections with RNAs of variable length converge on a robust catalytic core. Popović M; Ellingson AQ; Chu TP; Wei C; Pohorille A; Ditzler MA Nucleic Acids Res; 2021 Jan; 49(2):674-683. PubMed ID: 33367725 [TBL] [Abstract][Full Text] [Related]
19. Empirical analysis of RNA robustness and evolution using high-throughput sequencing of ribozyme reactions. Hayden EJ Methods; 2016 Aug; 106():97-104. PubMed ID: 27215494 [TBL] [Abstract][Full Text] [Related]