These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28645356)

  • 1. [Endocrine control of serum phosphate: from the discoveries of phosphatonins to novel therapies].
    Linglart A; Chaussain C
    Ann Endocrinol (Paris); 2016 Oct; 77 Suppl 1():S36-S42. PubMed ID: 28645356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal Dnase1 expression is regulated by FGF23 but loss of Dnase1 does not alter renal phosphate handling.
    Egli-Spichtig D; Zhang MYH; Li A; Pastor Arroyo EM; Hernando N; Wagner CA; Chang W; Perwad F
    Sci Rep; 2021 Mar; 11(1):6175. PubMed ID: 33731726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of bone in phosphate metabolism.
    Fukumoto S
    Mol Cell Endocrinol; 2009 Oct; 310(1-2):63-70. PubMed ID: 18822343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal phosphate handling in human--what can we learn from hereditary hypophosphataemias?
    Amatschek S; Haller M; Oberbauer R
    Eur J Clin Invest; 2010 Jun; 40(6):552-60. PubMed ID: 20412291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diseases of renal phosphate handling.
    Wagner CA; Rubio-Aliaga I; Biber J; Hernando N
    Nephrol Dial Transplant; 2014 Sep; 29 Suppl 4():iv45-54. PubMed ID: 25165185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tmem174, a regulator of phosphate transporter prevents hyperphosphatemia.
    Sasaki S; Shiozaki Y; Hanazaki A; Koike M; Tanifuji K; Uga M; Kawahara K; Kaneko I; Kawamoto Y; Wiriyasermkul P; Hasegawa T; Amizuka N; Miyamoto KI; Nagamori S; Kanai Y; Segawa H
    Sci Rep; 2022 Apr; 12(1):6353. PubMed ID: 35428804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fibroblast Growth Factor 23-Klotho: a new axis of phosphate balance control].
    Prié D; Ureña Torres P; Friedlander G
    Med Sci (Paris); 2009 May; 25(5):489-95. PubMed ID: 19480830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblast growth factor 23 as a phosphotropic hormone and beyond.
    Fukumoto S; Shimizu Y
    J Bone Miner Metab; 2011 Sep; 29(5):507-14. PubMed ID: 21822586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.
    Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice.
    Du E; Xiao L; Hurley MM
    J Cell Physiol; 2017 Mar; 232(3):610-616. PubMed ID: 27306296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Renal hypophosphatemia:pathophysiology and treatment].
    Sekine T
    Clin Calcium; 2016 Feb; 26(2):284-94. PubMed ID: 26813509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.
    Quarles LD
    Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E1-9. PubMed ID: 12791601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of hypocalcemia allows optimal recruitment of FGF-23-dependent phosphaturic mechanisms in acute hyperphosphatemia post-phosphate enema.
    Gracia-Iguacel C; Gonzalez-Parra E; Rodriguez-Osorio L; Sanz AB; Almaden Y; de la Piedra C; Egido J; Rodriguez M; Ortiz A
    J Bone Miner Metab; 2013 Nov; 31(6):703-7. PubMed ID: 23677707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic causes of hypophosphatemia.
    Puente N; Solis P; Riancho JA
    Minerva Med; 2024 Jun; 115(3):320-336. PubMed ID: 38727708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule.
    Portale AA; Zhang MY; David V; Martin A; Jiao Y; Gu W; Perwad F
    PLoS One; 2015; 10(11):e0142924. PubMed ID: 26588476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium stimulates renal phosphate reabsorption.
    Thumfart J; Jung S; Amasheh S; Krämer S; Peters H; Sommer K; Biber J; Murer H; Meij I; Querfeld U; Wagner CA; Müller D
    Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1126-33. PubMed ID: 18701629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic disorders of phosphate regulation.
    Gattineni J; Baum M
    Pediatr Nephrol; 2012 Sep; 27(9):1477-87. PubMed ID: 22350303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in renal phosphate handling.
    Farrow EG; White KE
    Nat Rev Nephrol; 2010 Apr; 6(4):207-17. PubMed ID: 20177401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Clinical Approach to Paediatric Phosphate Disorders.
    Imel EA; Carpenter TO
    Endocr Dev; 2015; 28():134-161. PubMed ID: 26138840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.