These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28645515)

  • 1. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.
    Rakshit T; Senapati S; Parmar VM; Sahu B; Maeda A; Park PS
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1691-1702. PubMed ID: 28645515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential adaptations in rod outer segment disc membranes in different models of congenital stationary night blindness.
    Senapati S; Park PS
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183396. PubMed ID: 32533975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective development of photoreceptor membranes in a mouse model of recessive retinal degeneration.
    Gross AK; Decker G; Chan F; Sandoval IM; Wilson JH; Wensel TG
    Vision Res; 2006 Dec; 46(27):4510-8. PubMed ID: 16979686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes.
    Rakshit T; Park PS
    Biochemistry; 2015 May; 54(18):2885-94. PubMed ID: 25881629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
    Whited AM; Park PS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes.
    Sechrest ER; Murphy J; Senapati S; Goldberg AFX; Park PS; Kolandaivelu S
    Sci Rep; 2020 Oct; 10(1):17885. PubMed ID: 33087780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary docosahexaenoic acid on rhodopsin content and packing in photoreceptor cell membranes.
    Senapati S; Gragg M; Samuels IS; Parmar VM; Maeda A; Park PS
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1403-1413. PubMed ID: 29626443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bright environmental light accelerates rhodopsin depletion in retinoid-deprived rats.
    Katz ML; Stientjes HJ; Gao CL; Norberg M
    Invest Ophthalmol Vis Sci; 1993 May; 34(6):2000-8. PubMed ID: 8491550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment.
    Burgoyne T; Meschede IP; Burden JJ; Bailly M; Seabra MC; Futter CE
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15922-7. PubMed ID: 26668363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of truncated rhodopsin and its effects on rod function and degeneration.
    Lee ES; Flannery JG
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.
    Rakshit T; Senapati S; Sinha S; Whited AM; Park PS
    PLoS One; 2015; 10(10):e0141114. PubMed ID: 26492040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
    Wolfrum U; Schmitt A
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):95-107. PubMed ID: 10891855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodopsin expression level affects rod outer segment morphology and photoresponse kinetics.
    Makino CL; Wen XH; Michaud NA; Covington HI; DiBenedetto E; Hamm HE; Lem J; Caruso G
    PLoS One; 2012; 7(5):e37832. PubMed ID: 22662234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoskeleton participation in subcellular trafficking of signal transduction proteins in rod photoreceptor cells.
    McGinnis JF; Matsumoto B; Whelan JP; Cao W
    J Neurosci Res; 2002 Feb; 67(3):290-7. PubMed ID: 11813233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pathways of rod photoreceptor cell death induced by elevated cGMP.
    Wang T; Tsang SH; Chen J
    Hum Mol Genet; 2017 Jun; 26(12):2299-2306. PubMed ID: 28379353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cholesterol in rod outer segment membranes.
    Albert AD; Boesze-Battaglia K
    Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
    Senapati S; Park PS
    Methods Mol Biol; 2019; 1886():61-74. PubMed ID: 30374862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.