These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
680 related articles for article (PubMed ID: 28645570)
1. Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis. Chang R; Lv B; Li B J Proteomics; 2017 Aug; 165():119-131. PubMed ID: 28645570 [TBL] [Abstract][Full Text] [Related]
2. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1. Panyakampol J; Cheevadhanarak S; Sutheeworapong S; Chaijaruwanich J; Senachak J; Siangdung W; Jeamton W; Tanticharoen M; Paithoonrangsarid K Plant Cell Physiol; 2015 Mar; 56(3):481-96. PubMed ID: 25524069 [TBL] [Abstract][Full Text] [Related]
3. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress. Li Q; Chang R; Sun Y; Li B PLoS One; 2016; 11(11):e0166876. PubMed ID: 27902743 [TBL] [Abstract][Full Text] [Related]
4. Revealing the key point of the temperature stress response of Arthrospira platensis C1 at the interconnection of C- and N- metabolism by proteome analyses and PPI networking. Kurdrid P; Phuengcharoen P; Senachak J; Saree S; Hongsthong A BMC Mol Cell Biol; 2020 Jun; 21(1):43. PubMed ID: 32532219 [TBL] [Abstract][Full Text] [Related]
5. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1. Senachak J; Cheevadhanarak S; Hongsthong A BMC Bioinformatics; 2015 Jul; 16(1):233. PubMed ID: 26220682 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis and qRT-PCR verification of temperature response to Arthrospira (Spirulina) platensis. Huili W; Xiaokai Z; Meili L; Dahlgren RA; Wei C; Jaiopeng Z; Chengyang X; Chunlei J; Yi X; Xuedong W; Li D; Qiyu B PLoS One; 2013; 8(12):e83485. PubMed ID: 24349519 [TBL] [Abstract][Full Text] [Related]
7. Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis. Jangir MM; Chowdhury S; Bhagavatula V Int Microbiol; 2021 May; 24(2):219-231. PubMed ID: 33438119 [TBL] [Abstract][Full Text] [Related]
8. Gene transcription and antioxidants production in Arthrospira (Spirulina) platensis grown under temperature variation. Ismaiel MMS; Piercey-Normore MD J Appl Microbiol; 2021 Mar; 130(3):891-900. PubMed ID: 32780445 [TBL] [Abstract][Full Text] [Related]
9. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005. Matallana-Surget S; Derock J; Leroy B; Badri H; Deschoenmaeker F; Wattiez R PLoS One; 2014; 9(6):e99076. PubMed ID: 24914774 [TBL] [Abstract][Full Text] [Related]
10. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis. Mao R; Guo S Appl Microbiol Biotechnol; 2018 Jun; 102(12):5245-5254. PubMed ID: 29691628 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic efficiency and rate of CO2 assimilation by Arthrospira (Spirulina) platensis continuously cultivated in a tubular photobioreactor. Matsudo MC; Bezerra RP; Sato S; Converti A; de Carvalho JC Biotechnol J; 2012 Nov; 7(11):1412-7. PubMed ID: 22933335 [TBL] [Abstract][Full Text] [Related]
12. Identification of differentially expressed proteins of Arthrospira (Spirulina) plantensis-YZ under salt-stress conditions by proteomics and qRT-PCR analysis. Wang H; Yang Y; Chen W; Ding L; Li P; Zhao X; Wang X; Li A; Bao Q Proteome Sci; 2013 Jan; 11(1):6. PubMed ID: 23363438 [TBL] [Abstract][Full Text] [Related]
13. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Zhou T; Wang J; Zheng H; Wu X; Wang Y; Liu M; Xiang S; Cao L; Ruan R; Liu Y Bioresour Technol; 2018 Dec; 269():285-291. PubMed ID: 30193212 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Manirafasha E; Murwanashyaka T; Ndikubwimana T; Rashid Ahmed N; Liu J; Lu Y; Zeng X; Ling X; Jing K Bioresour Technol; 2018 May; 255():293-301. PubMed ID: 29422330 [TBL] [Abstract][Full Text] [Related]
15. Proteome and Transcriptome Reveal Involvement of Heat Shock Proteins and Indoleacetic Acid Metabolism Process in Lentinula Edodes Thermotolerance. Wang GZ; Ma CJ; Luo Y; Zhou SS; Zhou Y; Ma XL; Cai YL; Yu JJ; Bian YB; Gong YH Cell Physiol Biochem; 2018; 50(5):1617-1637. PubMed ID: 30384356 [TBL] [Abstract][Full Text] [Related]
17. Adenylate cyclase in Arthrospira platensis responds to light through transcription. Kashith M; Keerthana B; Sriram S; Ramamurthy V Biochem Biophys Res Commun; 2016 Aug; 477(2):297-301. PubMed ID: 27311855 [TBL] [Abstract][Full Text] [Related]
18. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. Sudhir PR; Pogoryelov D; Kovacs L; Garab G; Murthy SD J Biochem Mol Biol; 2005 Jul; 38(4):481-5. PubMed ID: 16053716 [TBL] [Abstract][Full Text] [Related]
19. Quantum yield alterations due to the static magnetic fields action on Arthrospira platensis SAG 21.99: Evaluation of photosystem activity. Deamici KM; Cuellar-Bermudez SP; Muylaert K; Santos LO; Costa JAV Bioresour Technol; 2019 Nov; 292():121945. PubMed ID: 31404753 [TBL] [Abstract][Full Text] [Related]
20. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus. Huo D; Sun L; Zhang L; Ru X; Liu S; Yang X; Yang H J Proteomics; 2019 Feb; 193():27-43. PubMed ID: 30579964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]