BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28645607)

  • 1. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer.
    Ciccarone F; Vegliante R; Di Leo L; Ciriolo MR
    Semin Cancer Biol; 2017 Dec; 47():50-56. PubMed ID: 28645607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.
    Desideri E; Vegliante R; Ciriolo MR
    Cancer Lett; 2015 Jan; 356(2 Pt A):217-23. PubMed ID: 24614286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production.
    Nazaret C; Heiske M; Thurley K; Mazat JP
    J Theor Biol; 2009 Jun; 258(3):455-64. PubMed ID: 19007794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer.
    Nakhle J; Rodriguez AM; Vignais ML
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Tricarboxylic Acid Cycle at the Crossroad Between Cancer and Immunity.
    Scagliola A; Mainini F; Cardaci S
    Antioxid Redox Signal; 2020 Apr; 32(12):834-852. PubMed ID: 31847530
    [No Abstract]   [Full Text] [Related]  

  • 6. The functional roles of TCA cycle metabolites in cancer.
    Eniafe J; Jiang S
    Oncogene; 2021 May; 40(19):3351-3363. PubMed ID: 33864000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emerging role and targetability of the TCA cycle in cancer metabolism.
    Anderson NM; Mucka P; Kern JG; Feng H
    Protein Cell; 2018 Feb; 9(2):216-237. PubMed ID: 28748451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the TCA cycle: signaling to tumor formation.
    Raimundo N; Baysal BE; Shadel GS
    Trends Mol Med; 2011 Nov; 17(11):641-9. PubMed ID: 21764377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria.
    Daloso DM; Müller K; Obata T; Florian A; Tohge T; Bottcher A; Riondet C; Bariat L; Carrari F; Nunes-Nesi A; Buchanan BB; Reichheld JP; Araújo WL; Fernie AR
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1392-400. PubMed ID: 25646482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation.
    Nagaraj R; Sharpley MS; Chi F; Braas D; Zhou Y; Kim R; Clark AT; Banerjee U
    Cell; 2017 Jan; 168(1-2):210-223.e11. PubMed ID: 28086092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints.
    Ramakrishna R; Edwards JS; McCulloch A; Palsson BO
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R695-704. PubMed ID: 11171647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial metabolism and cancer.
    Weinberg F; Chandel NS
    Ann N Y Acad Sci; 2009 Oct; 1177():66-73. PubMed ID: 19845608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes.
    Noe JT; Mitchell RA
    J Leukoc Biol; 2019 Aug; 106(2):359-367. PubMed ID: 30768807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.
    Sajnani K; Islam F; Smith RA; Gopalan V; Lam AK
    Biochimie; 2017 Apr; 135():164-172. PubMed ID: 28219702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow TCA flux and ATP production in primary solid tumours but not metastases.
    Bartman CR; Weilandt DR; Shen Y; Lee WD; Han Y; TeSlaa T; Jankowski CSR; Samarah L; Park NR; da Silva-Diz V; Aleksandrova M; Gultekin Y; Marishta A; Wang L; Yang L; Roichman A; Bhatt V; Lan T; Hu Z; Xing X; Lu W; Davidson S; Wühr M; Vander Heiden MG; Herranz D; Guo JY; Kang Y; Rabinowitz JD
    Nature; 2023 Feb; 614(7947):349-357. PubMed ID: 36725930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.
    Lozoya OA; Martinez-Reyes I; Wang T; Grenet D; Bushel P; Li J; Chandel N; Woychik RP; Santos JH
    PLoS Biol; 2018 Apr; 16(4):e2005707. PubMed ID: 29668680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connections between metabolism and epigenetics in cancers.
    Thakur C; Chen F
    Semin Cancer Biol; 2019 Aug; 57():52-58. PubMed ID: 31185282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.