BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28645848)

  • 1. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.
    Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF
    Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis.
    Zdero R; Olsen M; Bougherara H; Schemitsch EH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1175-83. PubMed ID: 19143412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.
    Wirtz DC; Schiffers N; Pandorf T; Radermacher K; Weichert D; Forst R
    J Biomech; 2000 Oct; 33(10):1325-30. PubMed ID: 10899344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of experimental and finite element models of synthetic and cadaveric femora for pre-clinical design-analysis.
    McNamara BP; Cristofolini L; Toni A; Taylor D
    Clin Mater; 1994; 17(3):131-40. PubMed ID: 10150600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic analysis of peri-implant strain predictions as influenced by uncertainties in bone properties and occlusal forces.
    Petrie CS; Williams JL
    Clin Oral Implants Res; 2007 Oct; 18(5):611-9. PubMed ID: 17590159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs.
    Zdero R; Bougherara H; Dubov A; Shah S; Zalzal P; Mahfud A; Schemitsch EH
    Proc Inst Mech Eng H; 2010; 224(7):831-40. PubMed ID: 20839651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of the T2 femoral nailing system: a comparison of synthetic femurs withfinite element analysis.
    Bougherara H; Zdero R; Miric M; Shah S; Hardisty M; Zalzal P; Schemitsch EH
    Proc Inst Mech Eng H; 2009 Apr; 223(3):303-14. PubMed ID: 19405436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element and experimental cortex strains of the intact and implanted tibia.
    Completo A; Fonseca F; Simões JA
    J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
    Zhang Y; Zhong W; Zhu H; Chen Y; Xu L; Zhu J
    Int J Surg; 2013; 11(9):930-4. PubMed ID: 23832095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanical effect of changes in cancellous bone density on synthetic femur behaviour.
    Nicayenzi B; Shah S; Schemitsch EH; Bougherara H; Zdero R
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1050-60. PubMed ID: 22292203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position.
    Dubov A; Kim SY; Shah S; Schemitsch EH; Zdero R; Bougherara H
    Proc Inst Mech Eng H; 2011 Sep; 225(9):857-65. PubMed ID: 22070023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material model of pelvic bone based on modal analysis: a study on the composite bone.
    Henyš P; Čapek L
    Biomech Model Mechanobiol; 2017 Feb; 16(1):363-373. PubMed ID: 27561650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.