BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28645851)

  • 21. A fluorescent sphingolipid binding domain peptide probe interacts with sphingolipids and cholesterol-dependent raft domains.
    Hebbar S; Lee E; Manna M; Steinert S; Kumar GS; Wenk M; Wohland T; Kraut R
    J Lipid Res; 2008 May; 49(5):1077-89. PubMed ID: 18263852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation.
    Gupta N; DeFranco AL
    Mol Biol Cell; 2003 Feb; 14(2):432-44. PubMed ID: 12589045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes.
    Osteikoetxea-Molnár A; Szabó-Meleg E; Tóth EA; Oszvald Á; Izsépi E; Kremlitzka M; Biri B; Nyitray L; Bozó T; Németh P; Kellermayer M; Nyitrai M; Matko J
    Cell Mol Life Sci; 2016 Dec; 73(23):4531-4545. PubMed ID: 27125884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sphingolipid transport in eukaryotic cells.
    van Meer G; Holthuis JC
    Biochim Biophys Acta; 2000 Jun; 1486(1):145-70. PubMed ID: 10856719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aβ1-25-Derived Sphingolipid-Domain Tracer Peptide SBD Interacts with Membrane Ganglioside Clusters via a Coil-Helix-Coil Motif.
    Wang Y; Kraut R; Mu Y
    Int J Mol Sci; 2015 Nov; 16(11):26318-32. PubMed ID: 26540054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes of sphingolipid species in the phenotype conversion from myofibroblasts to lipocytes in hepatic stellate cells.
    Andrade CM; Trindade VM; Cardoso CC; Ziulkoski AL; Trugo LC; Guaragna RM; Borojevic R; Guma FC
    J Cell Biochem; 2003 Feb; 88(3):533-44. PubMed ID: 12532329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of curvature and phase transition in lipid sorting and fission of membrane tubules.
    Roux A; Cuvelier D; Nassoy P; Prost J; Bassereau P; Goud B
    EMBO J; 2005 Apr; 24(8):1537-45. PubMed ID: 15791208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A lipid zipper triggers bacterial invasion.
    Eierhoff T; Bastian B; Thuenauer R; Madl J; Audfray A; Aigal S; Juillot S; Rydell GE; Müller S; de Bentzmann S; Imberty A; Fleck C; Römer W
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12895-900. PubMed ID: 25136128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
    Wang TY; Silvius JR
    Biophys J; 2003 Jan; 84(1):367-78. PubMed ID: 12524290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nutritional significance of lipid rafts.
    Yaqoob P
    Annu Rev Nutr; 2009; 29():257-82. PubMed ID: 19400697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholesterol and sphingolipids as lipid organizers of the immune cells' plasma membrane: their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death.
    Gombos I; Kiss E; Detre C; László G; Matkó J
    Immunol Lett; 2006 Apr; 104(1-2):59-69. PubMed ID: 16388855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
    Gimsa U; Iglic A; Fiedler S; Zwanzig M; Kralj-Iglic V; Jonas L; Gimsa J
    Mol Membr Biol; 2007; 24(3):243-55. PubMed ID: 17520481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs.
    Kinoshita M; Suzuki KG; Matsumori N; Takada M; Ano H; Morigaki K; Abe M; Makino A; Kobayashi T; Hirosawa KM; Fujiwara TK; Kusumi A; Murata M
    J Cell Biol; 2017 Apr; 216(4):1183-1204. PubMed ID: 28330937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of plasmalogens, Forssman lipids, and sphingolipid hydroxylation in modulating the biophysical properties of the epithelial plasma membrane.
    Wilson KA; Fairweather SJ; MacDermott-Opeskin HI; Wang L; Morris RA; O'Mara ML
    J Chem Phys; 2021 Mar; 154(9):095101. PubMed ID: 33685172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
    Lenne PF; Wawrezinieck L; Conchonaud F; Wurtz O; Boned A; Guo XJ; Rigneault H; He HT; Marguet D
    EMBO J; 2006 Jul; 25(14):3245-56. PubMed ID: 16858413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid rafts as a membrane-organizing principle.
    Lingwood D; Simons K
    Science; 2010 Jan; 327(5961):46-50. PubMed ID: 20044567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The way we view cellular (glyco)sphingolipids.
    Hoetzl S; Sprong H; van Meer G
    J Neurochem; 2007 Nov; 103 Suppl 1():3-13. PubMed ID: 17986134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Physiological and pathological roles of gangliosides].
    Mrówczyńska L; Mrówczyński W
    Postepy Hig Med Dosw (Online); 2013 Sep; 67():938-49. PubMed ID: 24088537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sphingolipids in mammalian cell signalling.
    Ohanian J; Ohanian V
    Cell Mol Life Sci; 2001 Dec; 58(14):2053-68. PubMed ID: 11814056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.