BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28646078)

  • 1. Stereospecific Metabolism of
    Barnette DA; Johnson BP; Pouncey DL; Nshimiyimana R; Desrochers LP; Goodwin TE; Miller GP
    Drug Metab Dispos; 2017 Sep; 45(9):1000-1007. PubMed ID: 28646078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases.
    Malátková P; Sokolová S; Chocholoušová Havlíková L; Wsól V
    Biochem Pharmacol; 2016 Jun; 109():83-90. PubMed ID: 27055738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of experimental kidney disease on the functional expression of hepatic reductases.
    Alshogran OY; Naud J; Ocque AJ; Leblond FA; Pichette V; Nolin TD
    Drug Metab Dispos; 2015 Jan; 43(1):100-6. PubMed ID: 25332430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-affinity stereoselective reduction of the enantiomers of ketotifen and of ketonic nortriptyline metabolites by aldo-keto reductases from human liver.
    Breyer-Pfaff U; Nill K
    Biochem Pharmacol; 2000 Feb; 59(3):249-60. PubMed ID: 10609553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective acetonyl side chain reduction of warfarin and analogs. Partial characterization of two cytosolic carbonyl reductases.
    Hermans JJ; Thijssen HH
    Drug Metab Dispos; 1992; 20(2):268-74. PubMed ID: 1352220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warfarin metabolites: stereochemical aspects of protein binding and displacement by phenylbutazone.
    Chan E; McLachlan AJ; Rowland M
    Chirality; 1993; 5(8):610-5. PubMed ID: 8305289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Novel Reductive Elimination Pathway for 10-Hydroxywarfarin.
    Pouncey DL; Barnette DA; Sinnott RW; Phillips SJ; Flynn NR; Hendrickson HP; Swamidass SJ; Miller GP
    Front Pharmacol; 2021; 12():805133. PubMed ID: 35095511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver.
    Breyer-Pfaff U; Martin HJ; Ernst M; Maser E
    Drug Metab Dispos; 2004 Sep; 32(9):915-22. PubMed ID: 15319331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins.
    Kim SY; Kang JY; Hartman JH; Park SH; Jones DR; Yun CH; Boysen G; Miller GP
    Drug Metab Lett; 2012 Sep; 6(3):157-64. PubMed ID: 23331088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man.
    Wsol V; Szotakova B; Martin HJ; Maser E
    Toxicology; 2007 Sep; 238(2-3):111-8. PubMed ID: 17618725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel multi-mode ultra performance liquid chromatography-tandem mass spectrometry assay for profiling enantiomeric hydroxywarfarins and warfarin in human plasma.
    Jones DR; Boysen G; Miller GP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 May; 879(15-16):1056-62. PubMed ID: 21470921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases.
    Rosemond MJ; St John-Williams L; Yamaguchi T; Fujishita T; Walsh JS
    Chem Biol Interact; 2004 Mar; 147(2):129-39. PubMed ID: 15013815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties and stereoselectivity of carbonyl reductases involved in the ketone reduction of warfarin and analogues.
    Hermans JJ; Thijssen HH
    Adv Exp Med Biol; 1993; 328():351-60. PubMed ID: 8493912
    [No Abstract]   [Full Text] [Related]  

  • 14. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe.
    Zhang Z; Fasco MJ; Huang Z; Guengerich FP; Kaminsky LS
    Drug Metab Dispos; 1995 Dec; 23(12):1339-46. PubMed ID: 8689941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9.
    He M; Korzekwa KR; Jones JP; Rettie AE; Trager WF
    Arch Biochem Biophys; 1999 Dec; 372(1):16-28. PubMed ID: 10562412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warfarin: stereochemical aspects of its metabolism in vivo in the rat.
    Pohl LR; Bales R; Trager WF
    Res Commun Chem Pathol Pharmacol; 1976 Oct; 15(2):233-56. PubMed ID: 981784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warfarin and UDP-glucuronosyltransferases: writing a new chapter of metabolism.
    Jones DR; Moran JH; Miller GP
    Drug Metab Rev; 2010 Feb; 42(1):55-61. PubMed ID: 19788348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive metabolism of tiaprofenic acid by the human liver and recombinant carbonyl reducing enzymes.
    Malátková P; Skarka A; Musilová K; Wsól V
    Chem Biol Interact; 2017 Oct; 276():121-126. PubMed ID: 28322780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination index of the concentration and in vivo antagonism activity of racemic warfarin and its metabolites to assess individual drug responses.
    Kobayashi S; Ishii K; Yamada Y; Ryu E; Hashizume J; Nose S; Hara T; Nakashima M; Ohyama K
    J Thromb Thrombolysis; 2019 Apr; 47(3):467-472. PubMed ID: 30465164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The disposition of the enantiomers of warfarin following chronic administration to rats: relationship to anticoagulant response.
    Pratt SK; Winn MJ; Park BK
    J Pharm Pharmacol; 1989 Nov; 41(11):743-6. PubMed ID: 2576040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.