BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28646326)

  • 1. Transposable Elements Mediate Adaptive Debilitation of Flagella in Experimental Escherichia coli Populations.
    Plague GR; Boodram KS; Dougherty KM; Bregg S; Gilbert DP; Bakshi H; Costa D
    J Mol Evol; 2017 Jun; 84(5-6):279-284. PubMed ID: 28646326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli.
    Raeside C; Gaffé J; Deatherage DE; Tenaillon O; Briska AM; Ptashkin RN; Cruveiller S; Médigue C; Lenski RE; Barrick JE; Schneider D
    mBio; 2014 Sep; 5(5):e01377-14. PubMed ID: 25205090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxed natural selection alone does not permit transposable element expansion within 4,000 generations in Escherichia coli.
    Plague GR; Dougherty KM; Boodram KS; Boustani SE; Cao H; Manning SR; McNally CC
    Genetica; 2011 Jul; 139(7):895-902. PubMed ID: 21751098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertion sequence-driven evolution of Escherichia coli in chemostats.
    Gaffé J; McKenzie C; Maharjan RP; Coursange E; Ferenci T; Schneider D
    J Mol Evol; 2011 Apr; 72(4):398-412. PubMed ID: 21399911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide localization of mobile elements: experimental, statistical and biological considerations.
    Martinez-Vaz BM; Xie Y; Pan W; Khodursky AB
    BMC Genomics; 2005 Jun; 6():81. PubMed ID: 15929794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between transposable elements and mutator genes in bacteria.
    Fehér T; Bogos B; Méhi O; Fekete G; Csörgo B; Kovács K; Pósfai G; Papp B; Hurst LD; Pál C
    Mol Biol Evol; 2012 Oct; 29(10):3153-9. PubMed ID: 22527906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imprecise excision of insertion element IS5 from the fliC gene contributes to flagellar diversity in Escherichia coli.
    Strauch E; Beutin L
    FEMS Microbiol Lett; 2006 Mar; 256(2):195-202. PubMed ID: 16499606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.
    Kishimoto T; Ying BW; Tsuru S; Iijima L; Suzuki S; Hashimoto T; Oyake A; Kobayashi H; Someya Y; Narisawa D; Yomo T
    PLoS Genet; 2015 Jul; 11(7):e1005392. PubMed ID: 26177190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different adaptive strategies in E. coli populations evolving under macronutrient limitation and metal ion limitation.
    Warsi OM; Andersson DI; Dykhuizen DE
    BMC Evol Biol; 2018 May; 18(1):72. PubMed ID: 29776341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli evolution during stationary phase.
    Zinser ER; Kolter R
    Res Microbiol; 2004 Jun; 155(5):328-36. PubMed ID: 15207864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria.
    Consuegra J; Gaffé J; Lenski RE; Hindré T; Barrick JE; Tenaillon O; Schneider D
    Nat Commun; 2021 Feb; 12(1):980. PubMed ID: 33579917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environment-directed activation of the Escherichia coliflhDC operon by transposons.
    Zhang Z; Kukita C; Humayun MZ; Saier MH
    Microbiology (Reading); 2017 Apr; 163(4):554-569. PubMed ID: 28100305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli.
    Ko M; Park C
    J Mol Biol; 2000 Oct; 303(3):371-82. PubMed ID: 11031114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome evolution and adaptation in a long-term experiment with Escherichia coli.
    Barrick JE; Yu DS; Yoon SH; Jeong H; Oh TK; Schneider D; Lenski RE; Kim JF
    Nature; 2009 Oct; 461(7268):1243-7. PubMed ID: 19838166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli.
    Lee H; Doak TG; Popodi E; Foster PL; Tang H
    Nucleic Acids Res; 2016 Sep; 44(15):7109-19. PubMed ID: 27431326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates of transposition in Escherichia coli.
    Sousa A; Bourgard C; Wahl LM; Gordo I
    Biol Lett; 2013; 9(6):20130838. PubMed ID: 24307531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of insertion sequence elements during experimental evolution of bacteria.
    Schneider D; Lenski RE
    Res Microbiol; 2004 Jun; 155(5):319-27. PubMed ID: 15207863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tempo and mode of genome evolution in a 50,000-generation experiment.
    Tenaillon O; Barrick JE; Ribeck N; Deatherage DE; Blanchard JL; Dasgupta A; Wu GC; Wielgoss S; Cruveiller S; Médigue C; Schneider D; Lenski RE
    Nature; 2016 Aug; 536(7615):165-70. PubMed ID: 27479321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method for genome-wide screening for advantageous insertions of mobile DNAs in Escherichia coli.
    Edwards RJ; Sockett RE; Brookfield JF
    Curr Biol; 2002 May; 12(10):863-7. PubMed ID: 12015126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motility-activating mutations upstream of
    Schumacher K; Braun D; Kleigrewe K; Jung K
    Microbiol Spectr; 2024 Jun; 12(6):e0054424. PubMed ID: 38651876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.