These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28646326)

  • 81. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation.
    Phaneuf PV; Gosting D; Palsson BO; Feist AM
    Nucleic Acids Res; 2019 Jan; 47(D1):D1164-D1171. PubMed ID: 30357390
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Evolution of a Dominant Natural Isolate of Escherichia coli in the Human Gut over the Course of a Year Suggests a Neutral Evolution with Reduced Effective Population Size.
    Ghalayini M; Launay A; Bridier-Nahmias A; Clermont O; Denamur E; Lescat M; Tenaillon O
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305507
    [No Abstract]   [Full Text] [Related]  

  • 83. Adaptive evolution that requires multiple spontaneous mutations: mutations involving base substitutions.
    Hall BG
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5882-6. PubMed ID: 2062865
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bacterial Adaptation by a Transposition Burst of an Invading IS Element.
    Miller SR; Abresch HE; Ulrich NJ; Sano EB; Demaree AH; Oman AR; Garber AI
    Genome Biol Evol; 2021 Nov; 13(11):. PubMed ID: 34791212
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fitness effects of advantageous mutations in evolving Escherichia coli populations.
    Imhof M; Schlotterer C
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1113-7. PubMed ID: 11158603
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Whole-genome sequencing analysis of two heat-evolved Escherichia coli strains.
    McGuire BE; Nano FE
    BMC Genomics; 2023 Mar; 24(1):154. PubMed ID: 36973666
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Programming cells by multiplex genome engineering and accelerated evolution.
    Wang HH; Isaacs FJ; Carr PA; Sun ZZ; Xu G; Forest CR; Church GM
    Nature; 2009 Aug; 460(7257):894-898. PubMed ID: 19633652
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Genomic changes arising in long-term stab cultures of Escherichia coli.
    Faure D; Frederick R; Włoch D; Portier P; Blot M; Adams J
    J Bacteriol; 2004 Oct; 186(19):6437-42. PubMed ID: 15375124
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence.
    Hall BG
    Genetics; 1988 Dec; 120(4):887-97. PubMed ID: 2852143
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Evolutionary genomics of ecological specialization.
    Zhong S; Khodursky A; Dykhuizen DE; Dean AM
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11719-24. PubMed ID: 15289609
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance.
    Lukačišinová M; Fernando B; Bollenbach T
    Nat Commun; 2020 Jun; 11(1):3105. PubMed ID: 32561723
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Scalable method to determine mutations that occur during adaptive evolution of Escherichia coli.
    Raghunathan A; Palsson BO
    Biotechnol Lett; 2003 Mar; 25(5):435-41. PubMed ID: 12882568
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Neutral forces acting on intragenomic variability shape the Escherichia coli regulatory network topology.
    Ruths T; Nakhleh L
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7754-9. PubMed ID: 23610404
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Promoter recruitment drives the emergence of proto-genes in a long-term evolution experiment with Escherichia coli.
    Uz-Zaman MH; D'Alton S; Barrick JE; Ochman H
    PLoS Biol; 2024 May; 22(5):e3002418. PubMed ID: 38713714
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli.
    Woods R; Schneider D; Winkworth CL; Riley MA; Lenski RE
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9107-12. PubMed ID: 16751270
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evolution of microbial genomes: sequence acquisition and loss.
    Berg OG; Kurland CG
    Mol Biol Evol; 2002 Dec; 19(12):2265-76. PubMed ID: 12446817
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome.
    Morgenthaler AB; Kinney WR; Ebmeier CC; Walsh CM; Snyder DJ; Cooper VS; Old WM; Copley SD
    Elife; 2019 Dec; 8():. PubMed ID: 31815667
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bacterial "inserted sequence" elements and their influence on genetic stability and evolution.
    Arber W
    Prog Nucleic Acid Res Mol Biol; 1983; 29():27-33. PubMed ID: 6320291
    [No Abstract]   [Full Text] [Related]  

  • 99. Neutral Theory, Transposable Elements, and Eukaryotic Genome Evolution.
    Arkhipova IR
    Mol Biol Evol; 2018 Jun; 35(6):1332-1337. PubMed ID: 29688526
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Global discovery of adaptive mutations.
    Goodarzi H; Hottes AK; Tavazoie S
    Nat Methods; 2009 Aug; 6(8):581-3. PubMed ID: 19597501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.