BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28646396)

  • 1. Enhanced Phytoextraction of Lead from Artificially Contaminated Soil by Mirabilis jalapa with Chelating Agents.
    Yan L; Li C; Zhang J; Moodley O; Liu S; Lan C; Gao Q; Zhang W
    Bull Environ Contam Toxicol; 2017 Aug; 99(2):208-212. PubMed ID: 28646396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of [S,S]-ethylenediaminedisuccinic acid and nitrilotriacetic acid on the efficiency of Pb phytostabilization by Athyrium wardii (Hook.) grown in Pb-contaminated soils.
    Zhao L; Li T; Yu H; Zhang X; Zheng Z
    J Environ Manage; 2016 Nov; 182():94-100. PubMed ID: 27454100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
    Attinti R; Barrett KR; Datta R; Sarkar D
    Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils.
    Wang K; Liu Y; Song Z; Wang D; Qiu W
    Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance.
    Wang X; Wang Y; Mahmood Q; Islam E; Jin X; Li T; Yang X; Liu D
    J Hazard Mater; 2009 Aug; 168(1):530-5. PubMed ID: 19303708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L.
    Wang S; Liu J
    Environ Monit Assess; 2014 Feb; 186(2):751-9. PubMed ID: 24068285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ornamental hyperaccumulator Mirabilis jalapa L. phytoremediating combine contaminated soil enhanced by some chelators and surfactants.
    Wei S; Xu L; Dai H; Hu Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29699-29704. PubMed ID: 30144014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Activation Process of Pb, Cd and Tl Using Chelating Agents from Contaminated Red Soils.
    Liu L; Luo D; Yao G; Huang X; Wei L; Liu Y; Wu Q; Mai X; Liu G; Xiao T
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31941097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of heterogeneous chelating agents on the phytoremediation potential and growth of Sasa argenteostriata (Regel) E.G. Camus on Pb-contaminated soil.
    Yang Y; Liao J; Chen Y; Tian Y; Chen Q; Gao S; Luo Z; Yu X; Lei T; Jiang M
    Ecotoxicol Environ Saf; 2022 Jun; 238():113603. PubMed ID: 35551046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of EDTA and Tannic Acid on the Removal of Cd, Ni, Pb and Cu from Artificially Contaminated Soil by Althaea rosea Cavan.
    Cay S; Uyanik A; Engin MS; Kutbay HG
    Int J Phytoremediation; 2015; 17(1-6):568-74. PubMed ID: 25747244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania.
    Suthar V; Memon KS; Mahmood-ul-Hassan M
    Environ Monit Assess; 2014 Jun; 186(6):3957-68. PubMed ID: 24515546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators.
    Chhajro MA; Rizwan MS; Guoyong H; Jun Z; Kubar KA; Hongqing H
    Int J Phytoremediation; 2016; 18(7):664-70. PubMed ID: 26588431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.
    Lu Y; Luo D; Liu L; Tan Z; Lai A; Liu G; Li J; Long J; Huang X; Chen Y
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24409-24418. PubMed ID: 28895025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes.
    Beiyuan J; Tsang DCW; Valix M; Baek K; Ok YS; Zhang W; Bolan NS; Rinklebe J; Li XD
    Chemosphere; 2018 Aug; 205():178-187. PubMed ID: 29698828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.