BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28646398)

  • 1. The timing of bud break in warming conditions: variation among seven sympatric conifer species from Eastern Canada.
    Rossi S; Isabel N
    Int J Biometeorol; 2017 Nov; 61(11):1983-1991. PubMed ID: 28646398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break.
    Zhang S; Isabel N; Huang JG; Ren H; Rossi S
    Int J Biometeorol; 2019 Dec; 63(12):1631-1640. PubMed ID: 31385094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming.
    Rossi S; Isabel N
    Glob Chang Biol; 2017 Jan; 23(1):446-454. PubMed ID: 27196979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances.
    Rossi S
    Int J Biometeorol; 2015 Jul; 59(7):827-35. PubMed ID: 25225116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants and consequences of plant-insect phenological synchrony for a non-native herbivore on a deciduous conifer: implications for invasion success.
    Ward SF; Moon RD; Herms DA; Aukema BH
    Oecologia; 2019 Aug; 190(4):867-878. PubMed ID: 31317270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone.
    Marquis B; Bergeron Y; Simard M; Tremblay F
    Front Plant Sci; 2020; 11():1031. PubMed ID: 32849673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenological shifts in conifer species stressed by spruce budworm defoliation.
    Deslauriers A; Fournier MP; Cartenì F; Mackay J
    Tree Physiol; 2019 Apr; 39(4):590-605. PubMed ID: 30597102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of seasonal and annual heat accumulation for population dynamics of an invasive defoliator.
    Ward SF; Moon RD; Aukema BH
    Oecologia; 2019 Jul; 190(3):703-714. PubMed ID: 31292715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenology and growth of Fagus sylvatica and Quercus robur seedlings in response to temperature variation in the parental versus offspring generation.
    Dewan S; De Frenne P; Leroux O; Nijs I; Vander Mijnsbrugge K; Verheyen K
    Plant Biol (Stuttg); 2020 Jan; 22 Suppl 1():113-122. PubMed ID: 30739399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana.
    Pop EW; Oberbauer SF; Starr G
    Oecologia; 2000 Aug; 124(2):176-184. PubMed ID: 28308177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme cold consistently reduces seedling growth but has species-specific effects on browse tolerance in summer.
    Guiden PW; Connolly BM; Orrock JL
    Am J Bot; 2018 Dec; 105(12):2075-2080. PubMed ID: 30521099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging climate-driven disturbance processes: widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer.
    Buma B; Hennon PE; Harrington CA; Popkin JR; Krapek J; Lamb MS; Oakes LE; Saunders S; Zeglen S
    Glob Chang Biol; 2017 Jul; 23(7):2903-2914. PubMed ID: 27891717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break.
    Chuine I; Bonhomme M; Legave JM; García de Cortázar-Atauri I; Charrier G; Lacointe A; Améglio T
    Glob Chang Biol; 2016 Oct; 22(10):3444-60. PubMed ID: 27272707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers.
    Delpierre N; Lireux S; Hartig F; Camarero JJ; Cheaib A; Čufar K; Cuny H; Deslauriers A; Fonti P; Gričar J; Huang JG; Krause C; Liu G; de Luis M; Mäkinen H; Del Castillo EM; Morin H; Nöjd P; Oberhuber W; Prislan P; Rossi S; Saderi SM; Treml V; Vavrick H; Rathgeber CBK
    Glob Chang Biol; 2019 Mar; 25(3):1089-1105. PubMed ID: 30536724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers.
    Antonucci S; Rossi S; Deslauriers A; Lombardi F; Marchetti M; Tognetti R
    Tree Physiol; 2015 Oct; 35(10):1086-94. PubMed ID: 26377874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.
    Granhus A; Fløistad IS; Søgaard G
    Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting nonlinear response of spring phenology to climate change by Bayesian analysis.
    Pope KS; Dose V; Da Silva D; Brown PH; Leslie CA; Dejong TM
    Glob Chang Biol; 2013 May; 19(5):1518-25. PubMed ID: 23505006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming Events Advance or Delay Spring Phenology by Affecting Bud Dormancy Depth in Trees.
    Malyshev AV
    Front Plant Sci; 2020; 11():856. PubMed ID: 32655599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (Abies alba).
    Dhuli P; Rohloff J; Strimbeck GR
    Front Plant Sci; 2014; 5():706. PubMed ID: 25566281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.