BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 28646401)

  • 41. Virtual interaction and visualisation of 3D medical imaging data with VTK and Unity.
    Wheeler G; Deng S; Toussaint N; Pushparajah K; Schnabel JA; Simpson JM; Gomez A
    Healthc Technol Lett; 2018 Oct; 5(5):148-153. PubMed ID: 30800321
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Journey to the centre of the cell: Virtual reality immersion into scientific data.
    Johnston APR; Rae J; Ariotti N; Bailey B; Lilja A; Webb R; Ferguson C; Maher S; Davis TP; Webb RI; McGhee J; Parton RG
    Traffic; 2018 Feb; 19(2):105-110. PubMed ID: 29159991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Virtual Reality: Beyond Visualization.
    El Beheiry M; Doutreligne S; Caporal C; Ostertag C; Dahan M; Masson JB
    J Mol Biol; 2019 Mar; 431(7):1315-1321. PubMed ID: 30738026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Familiarity from the configuration of objects in 3-dimensional space and its relation to déjà vu: a virtual reality investigation.
    Cleary AM; Brown AS; Sawyer BD; Nomi JS; Ajoku AC; Ryals AJ
    Conscious Cogn; 2012 Jun; 21(2):969-75. PubMed ID: 22322010
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Russian normative data for 375 action pictures and verbs.
    Akinina Y; Malyutina S; Ivanova M; Iskra E; Mannova E; Dragoy O
    Behav Res Methods; 2015 Sep; 47(3):691-707. PubMed ID: 24912761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of an affective database made of interactive virtual environments.
    Dozio N; Marcolin F; Scurati GW; Nonis F; Ulrich L; Vezzetti E; Ferrise F
    Sci Rep; 2021 Dec; 11(1):24108. PubMed ID: 34916547
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative case study of 2D, 3D and immersive-virtual-reality applications for healthcare education.
    López Chávez O; Rodríguez LF; Gutierrez-Garcia JO
    Int J Med Inform; 2020 Sep; 141():104226. PubMed ID: 32659739
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Informed consent through 3D virtual reality: a randomized clinical trial.
    Perin A; Galbiati TF; Ayadi R; Gambatesa E; Orena EF; Riker NI; Silberberg H; Sgubin D; Meling TR; DiMeco F
    Acta Neurochir (Wien); 2021 Feb; 163(2):301-308. PubMed ID: 32242272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities.
    Foerster RM; Poth CH; Behler C; Botsch M; Schneider WX
    Sci Rep; 2016 Nov; 6():37016. PubMed ID: 27869220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.
    Higuera-Trujillo JL; López-Tarruella Maldonado J; Llinares Millán C
    Appl Ergon; 2017 Nov; 65():398-409. PubMed ID: 28601190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NeuroVR: an open source virtual reality platform for clinical psychology and behavioral neurosciences.
    Riva G; Gaggioli A; Villani D; Preziosa A; Morganti F; Corsi R; Faletti G; Vezzadini L
    Stud Health Technol Inform; 2007; 125():394-9. PubMed ID: 17377310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multipurpose Virtual Reality Environment for Biomedical and Health Applications.
    Torner J; Skouras S; Molinuevo JL; Gispert JD; Alpiste F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1511-1520. PubMed ID: 31283482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards Efficient Visual Guidance in Limited Field-of-View Head-Mounted Displays.
    Bork F; Schnelzer C; Eck U; Navab N
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2983-2992. PubMed ID: 30188832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of immersive virtual reality on proximal and conditioned threat.
    Rosén J; Kastrati G; Reppling A; Bergkvist K; Åhs F
    Sci Rep; 2019 Nov; 9(1):17407. PubMed ID: 31758051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.
    Comport AI; Marchand E; Pressigout M; Chaumette F
    IEEE Trans Vis Comput Graph; 2006; 12(4):615-28. PubMed ID: 16805268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physical Models and Virtual Reality Simulators in Otolaryngology.
    Javia L; Sardesai MG
    Otolaryngol Clin North Am; 2017 Oct; 50(5):875-891. PubMed ID: 28716337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. "Active" and "passive" learning of three-dimensional object structure within an immersive virtual reality environment.
    James KH; Humphrey GK; Vilis T; Corrie B; Baddour R; Goodale MA
    Behav Res Methods Instrum Comput; 2002 Aug; 34(3):383-90. PubMed ID: 12395554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combination of ultrasound, magnetic resonance imaging and virtual reality technologies to generate immersive three-dimensional fetal images.
    Werner H; Lopes Dos Santos JR; Ribeiro G; Belmonte SL; Daltro P; Araujo Júnior E
    Ultrasound Obstet Gynecol; 2017 Aug; 50(2):271-272. PubMed ID: 27804167
    [No Abstract]   [Full Text] [Related]  

  • 60. Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape.
    Pan X; Hamilton AFC
    Br J Psychol; 2018 Aug; 109(3):395-417. PubMed ID: 29504117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.