These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28646563)

  • 1. Cohesive network reconfiguration accompanies extended training.
    Telesford QK; Ashourvan A; Wymbs NF; Grafton ST; Vettel JM; Bassett DS
    Hum Brain Mapp; 2017 Sep; 38(9):4744-4759. PubMed ID: 28646563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging.
    Hartwigsen G; Volz LJ
    Neuroimage; 2021 Jan; 224():117449. PubMed ID: 33059054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance imaging of mouse brain networks plasticity following motor learning.
    Badea A; Ng KL; Anderson RJ; Zhang J; Miller MI; O'Brien RJ
    PLoS One; 2019; 14(5):e0216596. PubMed ID: 31067263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor skill learning induces brain network plasticity: A diffusion-tensor imaging study.
    Pi YL; Wu XH; Wang FJ; Liu K; Wu Y; Zhu H; Zhang J
    PLoS One; 2019; 14(2):e0210015. PubMed ID: 30726222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term effects of motor training on resting-state networks and underlying brain structure.
    Taubert M; Lohmann G; Margulies DS; Villringer A; Ragert P
    Neuroimage; 2011 Aug; 57(4):1492-8. PubMed ID: 21672633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain state flexibility accompanies motor-skill acquisition.
    Reddy PG; Mattar MG; Murphy AC; Wymbs NF; Grafton ST; Satterthwaite TD; Bassett DS
    Neuroimage; 2018 May; 171():135-147. PubMed ID: 29309897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic changes in large-scale functional network organization during autobiographical memory retrieval.
    Inman CS; James GA; Vytal K; Hamann S
    Neuropsychologia; 2018 Feb; 110():208-224. PubMed ID: 28951163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor Learning Induces Plasticity in the Resting Brain-Drumming Up a Connection.
    Amad A; Seidman J; Draper SB; Bruchhage MMK; Lowry RG; Wheeler J; Robertson A; Williams SCR; Smith MS
    Cereb Cortex; 2017 Mar; 27(3):2010-2021. PubMed ID: 26941381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.
    Reid LB; Sale MV; Cunnington R; Mattingley JB; Rose SE
    Hum Brain Mapp; 2017 Sep; 38(9):4302-4312. PubMed ID: 28677154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.
    Sale MV; Reid LB; Cocchi L; Pagnozzi AM; Rose SE; Mattingley JB
    Hum Brain Mapp; 2017 Sep; 38(9):4773-4787. PubMed ID: 28677224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic functional connectivity shapes individual differences in associative learning.
    Fatima Z; Kovacevic N; Misic B; McIntosh AR
    Hum Brain Mapp; 2016 Nov; 37(11):3911-3928. PubMed ID: 27353970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
    Cheng L; Zhu Y; Sun J; Deng L; He N; Yang Y; Ling H; Ayaz H; Fu Y; Tong S
    Int J Neural Syst; 2018 Sep; 28(7):1850002. PubMed ID: 29607681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor sequence learning-induced neural efficiency in functional brain connectivity.
    Karim HT; Huppert TJ; Erickson KI; Wollam ME; Sparto PJ; Sejdić E; VanSwearingen JM
    Behav Brain Res; 2017 Feb; 319():87-95. PubMed ID: 27845228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis.
    Heitger MH; Ronsse R; Dhollander T; Dupont P; Caeyenberghs K; Swinnen SP
    Neuroimage; 2012 Jul; 61(3):633-50. PubMed ID: 22503778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting future learning from baseline network architecture.
    Mattar MG; Wymbs NF; Bock AS; Aguirre GK; Grafton ST; Bassett DS
    Neuroimage; 2018 May; 172():107-117. PubMed ID: 29366697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic reconfiguration of human brain networks during learning.
    Bassett DS; Wymbs NF; Porter MA; Mucha PJ; Carlson JM; Grafton ST
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7641-6. PubMed ID: 21502525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning.
    Herholz SC; Coffey EB; Pantev C; Zatorre RJ
    Cereb Cortex; 2016 Jul; 26(7):3125-34. PubMed ID: 26139842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insula-based networks in professional musicians: Evidence for increased functional connectivity during resting state fMRI.
    Zamorano AM; Cifre I; Montoya P; Riquelme I; Kleber B
    Hum Brain Mapp; 2017 Oct; 38(10):4834-4849. PubMed ID: 28737256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.