These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28646906)

  • 1. Modulation of oxidative phosphorylation and redox homeostasis in mitochondrial NDUFS4 deficiency via mesenchymal stem cells.
    Melcher M; Danhauser K; Seibt A; Degistirici Ö; Baertling F; Kondadi AK; Reichert AS; Koopman WJH; Willems PHGM; Rodenburg RJ; Mayatepek E; Meisel R; Distelmaier F
    Stem Cell Res Ther; 2017 Jun; 8(1):150. PubMed ID: 28646906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesenchymal stem cells improve redox homeostasis and mitochondrial respiration in fibroblast cell lines with pathogenic MT-ND3 and MT-ND6 variants.
    Navaratnarajah T; Bellmann M; Seibt A; Anand R; Degistirici Ö; Meisel R; Mayatepek E; Reichert A; Baertling F; Distelmaier F
    Stem Cell Res Ther; 2022 Jun; 13(1):256. PubMed ID: 35715829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts.
    Valsecchi F; Monge C; Forkink M; de Groof AJ; Benard G; Rossignol R; Swarts HG; van Emst-de Vries SE; Rodenburg RJ; Calvaruso MA; Nijtmans LG; Heeman B; Roestenberg P; Wieringa B; Smeitink JA; Koopman WJ; Willems PH
    Biochim Biophys Acta; 2012 Oct; 1817(10):1925-36. PubMed ID: 22430089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration.
    Jiang D; Xiong G; Feng H; Zhang Z; Chen P; Yan B; Chen L; Gandhervin K; Ma C; Li C; Han S; Zhang Y; Liao C; Lee TL; Tse HF; Fu QL; Chiu K; Lian Q
    Theranostics; 2019; 9(8):2395-2410. PubMed ID: 31149051
    [No Abstract]   [Full Text] [Related]  

  • 5. Cellular and animal models for mitochondrial complex I deficiency: a focus on the NDUFS4 subunit.
    Breuer ME; Willems PH; Smeitink JA; Koopman WJ; Nooteboom M
    IUBMB Life; 2013 Mar; 65(3):202-8. PubMed ID: 23378164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of mitochondrial bioenergetics, dynamics, endoplasmic reticulum-mitochondria crosstalk, and reactive oxygen species in fibroblasts from patients with complex I deficiency.
    Leipnitz G; Mohsen AW; Karunanidhi A; Seminotti B; Roginskaya VY; Markantone DM; Grings M; Mihalik SJ; Wipf P; Van Houten B; Vockley J
    Sci Rep; 2018 Jan; 8(1):1165. PubMed ID: 29348607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary fibroblasts of NDUFS4(-/-) mice display increased ROS levels and aberrant mitochondrial morphology.
    Valsecchi F; Grefte S; Roestenberg P; Joosten-Wagenaars J; Smeitink JA; Willems PH; Koopman WJ
    Mitochondrion; 2013 Sep; 13(5):436-43. PubMed ID: 23234723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts.
    Morán M; Rivera H; Sánchez-Aragó M; Blázquez A; Merinero B; Ugalde C; Arenas J; Cuezva JM; Martín MA
    Biochim Biophys Acta; 2010 May; 1802(5):443-53. PubMed ID: 20153825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene.
    Leong DW; Komen JC; Hewitt CA; Arnaud E; McKenzie M; Phipson B; Bahlo M; Laskowski A; Kinkel SA; Davey GM; Heath WR; Voss AK; Zahedi RP; Pitt JJ; Chrast R; Sickmann A; Ryan MT; Smyth GK; Thorburn DR; Scott HS
    J Biol Chem; 2012 Jun; 287(24):20652-63. PubMed ID: 22535952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency.
    Leman G; Gueguen N; Desquiret-Dumas V; Kane MS; Wettervald C; Chupin S; Chevrollier A; Lebre AS; Bonnefont JP; Barth M; Amati-Bonneau P; Verny C; Henrion D; Bonneau D; Reynier P; Procaccio V
    Int J Biochem Cell Biol; 2015 Aug; 65():91-103. PubMed ID: 26024641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connexin 43 regulates intercellular mitochondrial transfer from human mesenchymal stromal cells to chondrocytes.
    Irwin RM; Thomas MA; Fahey MJ; Mayán MD; Smyth JW; Delco ML
    Stem Cell Res Ther; 2024 Oct; 15(1):359. PubMed ID: 39390589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency.
    Ugalde C; Janssen RJ; van den Heuvel LP; Smeitink JA; Nijtmans LG
    Hum Mol Genet; 2004 Mar; 13(6):659-67. PubMed ID: 14749350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NDUFS4 deletion triggers loss of NDUFA12 in Ndufs4
    Adjobo-Hermans MJW; de Haas R; Willems PHGM; Wojtala A; van Emst-de Vries SE; Wagenaars JA; van den Brand M; Rodenburg RJ; Smeitink JAM; Nijtmans LG; Sazanov LA; Wieckowski MR; Koopman WJH
    Biochim Biophys Acta Bioenerg; 2020 Aug; 1861(8):148213. PubMed ID: 32335026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4 mutations in patients with Leigh syndrome.
    Assouline Z; Jambou M; Rio M; Bole-Feysot C; de Lonlay P; Barnerias C; Desguerre I; Bonnemains C; Guillermet C; Steffann J; Munnich A; Bonnefont JP; Rötig A; Lebre AS
    Biochim Biophys Acta; 2012 Jun; 1822(6):1062-9. PubMed ID: 22326555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musculoskeletal Progenitor/Stromal Cell-Derived Mitochondria Modulate Cell Differentiation and Therapeutical Function.
    Jorgensen C; Khoury M
    Front Immunol; 2021; 12():606781. PubMed ID: 33763061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology?
    Koopman WJ; Verkaart S; Visch HJ; van Emst-de Vries S; Nijtmans LG; Smeitink JA; Willems PH
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C22-9. PubMed ID: 17428841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function.
    Lin HY; Liou CW; Chen SD; Hsu TY; Chuang JH; Wang PW; Huang ST; Tiao MM; Chen JB; Lin TK; Chuang YC
    Mitochondrion; 2015 May; 22():31-44. PubMed ID: 25746175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH: ubiquinone oxidoreductase Ndufc2 subunit.
    Raffa S; Scrofani C; Valente S; Micaloni A; Forte M; Bianchi F; Coluccia R; Geurts AM; Sciarretta S; Volpe M; Torrisi MR; Rubattu S
    Hum Mol Genet; 2017 Dec; 26(23):4541-4555. PubMed ID: 28973657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung.
    Sinclair KA; Yerkovich ST; Hopkins PM; Chambers DC
    Stem Cell Res Ther; 2016 Jul; 7(1):91. PubMed ID: 27406134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.