These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2864752)

  • 1. Involvement of glutathione in the enhanced renal excretion of methyl mercury in CFW Swiss mice.
    Mulder KM; Kostyniak PJ
    Toxicol Appl Pharmacol; 1985 May; 78(3):451-7. PubMed ID: 2864752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of inhibition of gamma-glutamyltranspeptidase on biliary and urinary excretion of glutathione-derived thiols and methylmercury.
    Gregus Z; Stein AF; Klaassen CD
    J Pharmacol Exp Ther; 1987 Jul; 242(1):27-32. PubMed ID: 2886637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An explanation for strain and sex differences in renal uptake of methylmercury in mice.
    Tanaka T; Naganuma A; Kobayashi K; Imura N
    Toxicology; 1991; 69(3):317-29. PubMed ID: 1683032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in elimination rates of methylmercury between two genetic variant strains of mice.
    Kostyniak PJ
    Toxicol Lett; 1980 Oct; 6(6):405-10. PubMed ID: 7444980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of hepatic glutathione in transport of methylmercury into mouse kidney.
    Naganuma A; Oda-Urano N; Tanaka T; Imura N
    Biochem Pharmacol; 1988 Jan; 37(2):291-6. PubMed ID: 3342085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain difference in sensitivity of mice to renal toxicity of inorganic mercury.
    Tanaka-Kagawa T; Suzuki M; Naganuma A; Yamanaka N; Imura N
    J Pharmacol Exp Ther; 1998 Apr; 285(1):335-41. PubMed ID: 9536029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of extracellular glutathione and gamma-glutamyltranspeptidase in the disposition and kidney toxicity of inorganic mercury in rats.
    de Ceaurriz J; Payan JP; Morel G; Brondeau MT
    J Appl Toxicol; 1994; 14(3):201-6. PubMed ID: 7916024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated methylmercury elimination in gamma-glutamyl transpeptidase-deficient mice.
    Ballatori N; Wang W; Lieberman MW
    Am J Pathol; 1998 Apr; 152(4):1049-55. PubMed ID: 9546365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species variations in biliary excretion of glutathione-related thiols and methylmercury.
    Stein AF; Gregus Z; Klaassen CD
    Toxicol Appl Pharmacol; 1988 May; 93(3):351-9. PubMed ID: 2897139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid on urinary excretion of methylmercury in the mouse.
    Mulder KM; Kostyniak PJ
    J Pharmacol Exp Ther; 1985 Jul; 234(1):156-60. PubMed ID: 4009498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain difference in mercury excretion in methylmercury-treated mice.
    Yasutake A; Hirayama K
    Arch Toxicol; 1986 Jul; 59(2):99-102. PubMed ID: 3753197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of urinary excretion of methylmercury in mice.
    Yasutake A; Hirayama K; Inoue M
    Arch Toxicol; 1989; 63(6):479-83. PubMed ID: 2575893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of testosterone in gamma-glutamyltranspeptidase-dependent renal methylmercury uptake in mice.
    Tanaka T; Naganuma A; Miura N; Imura N
    Toxicol Appl Pharmacol; 1992 Jan; 112(1):58-63. PubMed ID: 1346343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex and age differences in mercury distribution and excretion in methylmercury-administered mice.
    Hirayama K; Yasutake A
    J Toxicol Environ Health; 1986; 18(1):49-60. PubMed ID: 3701881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione mutagenesis in Salmonella typhimurium TA100: dependence on a single enzyme, gamma-glutamyltranspeptidase.
    Stark AA; Zeiger E; Pagano DA
    Mutat Res; 1987 Mar; 177(1):45-52. PubMed ID: 2881203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glutathione in reduction of arsenate and of gamma-glutamyltranspeptidase in disposition of arsenite in rats.
    Csanaky I; Gregus Z
    Toxicology; 2005 Feb; 207(1):91-104. PubMed ID: 15590125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of subchronic administration of ethanol and methylmercury in combination on the tissue distribution of mercury in rats.
    Turner CJ; Bhatnagar MK; Speisky H
    Can J Physiol Pharmacol; 1990 Dec; 68(12):1558-62. PubMed ID: 1982244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sex hormones on the fate of methylmercury and on glutathione metabolism in mice.
    Hirayama K; Yasutake A; Inoue M
    Biochem Pharmacol; 1987 Jun; 36(12):1919-24. PubMed ID: 3593401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excretion and absorption of methyl mercury after polythiol resin treatment.
    Clarkson TW; Small H; Norseth T
    Arch Environ Health; 1973 Apr; 26(4):173-6. PubMed ID: 4689793
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of the mixed disulfide of glutathione and cysteinylglycine in bile: dependence on gamma-glutamyl transferase and responsiveness to oxidative stress.
    Madhu C; Gregus Z; Cheng CC; Klaassen CD
    J Pharmacol Exp Ther; 1992 Sep; 262(3):896-900. PubMed ID: 1356152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.