BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28647602)

  • 1. Improvement of lindane removal by Streptomyces sp. M7 by using stable microemulsions.
    Saez JM; Casillas García V; Benimeli CS
    Ecotoxicol Environ Saf; 2017 Oct; 144():351-359. PubMed ID: 28647602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions.
    Zheng G; Zhao Z; Wong JW
    Environ Technol; 2011; 32(3-4):269-79. PubMed ID: 21780695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.
    Aparicio J; Solá MZ; Benimeli CS; Amoroso MJ; Polti MA
    Ecotoxicol Environ Saf; 2015 Jun; 116():34-9. PubMed ID: 25749405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.
    Abdul Salam J; Das N
    J Microbiol Biotechnol; 2013 Nov; 23(11):1598-609. PubMed ID: 23928846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract.
    Benimeli CS; González AJ; Chaile AP; Amoroso MJ
    J Basic Microbiol; 2007 Dec; 47(6):468-73. PubMed ID: 18072247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types.
    Raimondo EE; Saez JM; Aparicio JD; Fuentes MS; Benimeli CS
    Chemosphere; 2020 Jan; 238():124512. PubMed ID: 31430718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lindane removal induction by Streptomyces sp. M7.
    Benimeli CS; Castro GR; Chaile AP; Amoroso MJ
    J Basic Microbiol; 2006; 46(5):348-57. PubMed ID: 17009290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems.
    Fuentes MS; Raimondo EE; Amoroso MJ; Benimeli CS
    Chemosphere; 2017 Apr; 173():359-367. PubMed ID: 28126570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.
    Zheng G; Selvam A; Wong JW
    Environ Sci Technol; 2012 Nov; 46(21):12062-8. PubMed ID: 22998366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions.
    Malcolmson C; Satra C; Kantaria S; Sidhu A; Lawrence MJ
    J Pharm Sci; 1998 Jan; 87(1):109-16. PubMed ID: 9452978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cr(VI) and lindane removal by Streptomyces M7 is improved by maize root exudates.
    Simon Sola MZ; Pérez Visñuk D; Benimeli CS; Polti MA; Alvarez A
    J Basic Microbiol; 2017 Dec; 57(12):1037-1044. PubMed ID: 28940512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.
    Sineli PE; Tortella G; Dávila Costa JS; Benimeli CS; Cuozzo SA
    World J Microbiol Biotechnol; 2016 May; 32(5):81. PubMed ID: 27038951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil-in-water microemulsions enhance the biodegradation of DDT by Phanerochaete chrysosporium.
    Zheng G; Selvam A; Wong JW
    Bioresour Technol; 2012 Dec; 126():397-403. PubMed ID: 22520221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lindane dissipation in a biomixture: Effect of soil properties and bioaugmentation.
    Saez JM; Bigliardo AL; Raimondo EE; Briceño GE; Polti MA; Benimeli CS
    Ecotoxicol Environ Saf; 2018 Jul; 156():97-105. PubMed ID: 29533212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation.
    Simón Solá MZ; Lovaisa N; Dávila Costa JS; Benimeli CS; Polti MA; Alvarez A
    Chemosphere; 2019 May; 222():679-687. PubMed ID: 30735968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: Experimental factorial design for bioremediation process optimization.
    Aparicio JD; Raimondo EE; Gil RA; Benimeli CS; Polti MA
    J Hazard Mater; 2018 Jan; 342():408-417. PubMed ID: 28854393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.