These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 28647602)
1. Improvement of lindane removal by Streptomyces sp. M7 by using stable microemulsions. Saez JM; Casillas García V; Benimeli CS Ecotoxicol Environ Saf; 2017 Oct; 144():351-359. PubMed ID: 28647602 [TBL] [Abstract][Full Text] [Related]
2. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions. Zheng G; Zhao Z; Wong JW Environ Technol; 2011; 32(3-4):269-79. PubMed ID: 21780695 [TBL] [Abstract][Full Text] [Related]
3. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane. Aparicio J; Solá MZ; Benimeli CS; Amoroso MJ; Polti MA Ecotoxicol Environ Saf; 2015 Jun; 116():34-9. PubMed ID: 25749405 [TBL] [Abstract][Full Text] [Related]
4. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01. Abdul Salam J; Das N J Microbiol Biotechnol; 2013 Nov; 23(11):1598-609. PubMed ID: 23928846 [TBL] [Abstract][Full Text] [Related]
5. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. Benimeli CS; González AJ; Chaile AP; Amoroso MJ J Basic Microbiol; 2007 Dec; 47(6):468-73. PubMed ID: 18072247 [TBL] [Abstract][Full Text] [Related]
6. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types. Raimondo EE; Saez JM; Aparicio JD; Fuentes MS; Benimeli CS Chemosphere; 2020 Jan; 238():124512. PubMed ID: 31430718 [TBL] [Abstract][Full Text] [Related]
8. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Fuentes MS; Raimondo EE; Amoroso MJ; Benimeli CS Chemosphere; 2017 Apr; 173():359-367. PubMed ID: 28126570 [TBL] [Abstract][Full Text] [Related]
9. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant. Zheng G; Selvam A; Wong JW Environ Sci Technol; 2012 Nov; 46(21):12062-8. PubMed ID: 22998366 [TBL] [Abstract][Full Text] [Related]
10. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions. Djekic L; Primorac M; Filipic S; Agbaba D Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578 [TBL] [Abstract][Full Text] [Related]
11. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. Malcolmson C; Satra C; Kantaria S; Sidhu A; Lawrence MJ J Pharm Sci; 1998 Jan; 87(1):109-16. PubMed ID: 9452978 [TBL] [Abstract][Full Text] [Related]
12. Cr(VI) and lindane removal by Streptomyces M7 is improved by maize root exudates. Simon Sola MZ; Pérez Visñuk D; Benimeli CS; Polti MA; Alvarez A J Basic Microbiol; 2017 Dec; 57(12):1037-1044. PubMed ID: 28940512 [TBL] [Abstract][Full Text] [Related]
13. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Djekic L; Primorac M Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919 [TBL] [Abstract][Full Text] [Related]
14. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7. Sineli PE; Tortella G; Dávila Costa JS; Benimeli CS; Cuozzo SA World J Microbiol Biotechnol; 2016 May; 32(5):81. PubMed ID: 27038951 [TBL] [Abstract][Full Text] [Related]
15. Oil-in-water microemulsions enhance the biodegradation of DDT by Phanerochaete chrysosporium. Zheng G; Selvam A; Wong JW Bioresour Technol; 2012 Dec; 126():397-403. PubMed ID: 22520221 [TBL] [Abstract][Full Text] [Related]
16. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Cho YH; Kim S; Bae EK; Mok CK; Park J J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105 [TBL] [Abstract][Full Text] [Related]
17. Lindane dissipation in a biomixture: Effect of soil properties and bioaugmentation. Saez JM; Bigliardo AL; Raimondo EE; Briceño GE; Polti MA; Benimeli CS Ecotoxicol Environ Saf; 2018 Jul; 156():97-105. PubMed ID: 29533212 [TBL] [Abstract][Full Text] [Related]
18. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. Simón Solá MZ; Lovaisa N; Dávila Costa JS; Benimeli CS; Polti MA; Alvarez A Chemosphere; 2019 May; 222():679-687. PubMed ID: 30735968 [TBL] [Abstract][Full Text] [Related]
19. Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: Experimental factorial design for bioremediation process optimization. Aparicio JD; Raimondo EE; Gil RA; Benimeli CS; Polti MA J Hazard Mater; 2018 Jan; 342():408-417. PubMed ID: 28854393 [TBL] [Abstract][Full Text] [Related]
20. Surfactant-enhanced remediation of organic contaminated soil and water. Paria S Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]