BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28647608)

  • 1. A route-based pathway analysis framework integrating mutation information and gene expression data.
    Zhao Y; Hoang TH; Joshi P; Hong SH; Giardina C; Shin DG
    Methods; 2017 Jul; 124():3-12. PubMed ID: 28647608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Pathway Analysis V2.0: A Pathway Analysis Framework Incorporating Multi-Dimensional Omics Data.
    Zhao Y; Shin DG
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):373-385. PubMed ID: 31603796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIDAS: Mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data.
    Lee S; Park Y; Kim S
    Methods; 2017 Jul; 124():13-24. PubMed ID: 28579402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways.
    Kim I; Choi S; Kim S
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):42. PubMed ID: 29504910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A framework using topological pathways for deeper analysis of transcriptome data.
    Zhao Y; Piekos S; Hoang TH; Shin DG
    BMC Genomics; 2020 Mar; 21(Suppl 1):834. PubMed ID: 32138666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer.
    Wang L; Xiao Y; Ping Y; Li J; Zhao H; Li F; Hu J; Zhang H; Deng Y; Tian J; Li X
    PLoS One; 2014; 9(8):e104282. PubMed ID: 25137136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Network to Infer Drug-Induced Apoptosis Circuits from Connectivity Map Data.
    Yu J; Silva JM
    Methods Mol Biol; 2018; 1783():361-378. PubMed ID: 29767372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
    Gevaert O; De Smet F; Timmerman D; Moreau Y; De Moor B
    Bioinformatics; 2006 Jul; 22(14):e184-90. PubMed ID: 16873470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic prioritization of candidate pathway association with pathway score.
    Lin SJ; Lu TP; Yu QY; Hsiao CK
    BMC Bioinformatics; 2018 Oct; 19(1):391. PubMed ID: 30355338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer network activity associated with therapeutic response and synergism.
    Serra-Musach J; Mateo F; Capdevila-Busquets E; de Garibay GR; Zhang X; Guha R; Thomas CJ; Grueso J; Villanueva A; Jaeger S; Heyn H; Vizoso M; Pérez H; Cordero A; Gonzalez-Suarez E; Esteller M; Moreno-Bueno G; Tjärnberg A; Lázaro C; Serra V; Arribas J; Benson M; Gustafsson M; Ferrer M; Aloy P; Pujana MÀ
    Genome Med; 2016 Aug; 8(1):88. PubMed ID: 27553366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topologically inferring pathway activity for precise survival outcome prediction: breast cancer as a case.
    Liu W; Wang W; Tian G; Xie W; Lei L; Liu J; Huang W; Xu L; Li E
    Mol Biosyst; 2017 Feb; 13(3):537-548. PubMed ID: 28098303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the altered transcriptional programs in breast cancer using independent component analysis.
    Teschendorff AE; Journée M; Absil PA; Sepulchre R; Caldas C
    PLoS Comput Biol; 2007 Aug; 3(8):e161. PubMed ID: 17708679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics analysis of aggressive behavior of breast cancer via an integrated gene regulatory network.
    Yang X; Jia M; Li Z; Lu S; Qi X; Zhao B; Wang X; Rong Y; Shi J; Zhang Z; Xu W; Gao Y; Zhang S; Yu G
    J Cancer Res Ther; 2014; 10(4):1013-8. PubMed ID: 25579546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAERUS: predicting CAncER oUtcomeS using relationship between protein structural information, protein networks, gene expression data, and mutation data.
    Zhang KX; Ouellette BF
    PLoS Comput Biol; 2011 Mar; 7(3):e1001114. PubMed ID: 21483478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice.
    Nogales-Cadenas R; Cai Y; Lin JR; Zhang Q; Zhang W; Montagna C; Zhang ZD
    Breast Cancer Res; 2016 Jul; 18(1):75. PubMed ID: 27449149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.