These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28647608)

  • 41. A network-based pathway-expanding approach for pathway analysis.
    Zhang Q; Li J; Xie H; Xue H; Wang Y
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):536. PubMed ID: 28155638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Molecular Portrait of High-Grade Ductal Carcinoma In Situ.
    Abba MC; Gong T; Lu Y; Lee J; Zhong Y; Lacunza E; Butti M; Takata Y; Gaddis S; Shen J; Estecio MR; Sahin AA; Aldaz CM
    Cancer Res; 2015 Sep; 75(18):3980-90. PubMed ID: 26249178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pathway recognition and augmentation by computational analysis of microarray expression data.
    Novak BA; Jain AN
    Bioinformatics; 2006 Jan; 22(2):233-41. PubMed ID: 16278238
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for a transcriptional signature of breast cancer.
    Feng Y; Li X; Sun B; Wang Y; Zhang L; Pan X; Chen X; Wang X; Wang J; Hao X
    Breast Cancer Res Treat; 2010 Jul; 122(1):65-75. PubMed ID: 19728083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.
    Tian XW; Lim JS
    Biomed Mater Eng; 2015; 26 Suppl 1():S1929-36. PubMed ID: 26405966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
    Sundaramurthy G; Eghbalnia HR
    Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Markov random field model for network-based analysis of genomic data.
    Wei Z; Li H
    Bioinformatics; 2007 Jun; 23(12):1537-44. PubMed ID: 17483504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma.
    Dong L; Chen CY; Ning B; Xu DL; Gao JH; Wang LL; Yan SY; Cheng S
    Genet Mol Res; 2015 Aug; 14(3):9571-84. PubMed ID: 26345890
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inference of breast cancer metastasis through gene regulatory networks.
    Ahmad FK; Deris S; Othman NH
    J Biomed Inform; 2012 Apr; 45(2):350-62. PubMed ID: 22179053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer.
    Colaprico A; Cava C; Bertoli G; Bontempi G; Castiglioni I
    Biomed Res Int; 2015; 2015():831314. PubMed ID: 26240829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic changes of RNA-sequencing expression for precision medicine: N-of-1-pathways Mahalanobis distance within pathways of single subjects predicts breast cancer survival.
    Schissler AG; Gardeux V; Li Q; Achour I; Li H; Piegorsch WW; Lussier YA
    Bioinformatics; 2015 Jun; 31(12):i293-302. PubMed ID: 26072495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM.
    Sedgewick AJ; Benz SC; Rabizadeh S; Soon-Shiong P; Vaske CJ
    Bioinformatics; 2013 Jul; 29(13):i62-70. PubMed ID: 23813010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PerPAS: Topology-Based Single Sample Pathway Analysis Method.
    Liu C; Lehtonen R; Hautaniemi S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):1022-1027. PubMed ID: 28287981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Attention-Based Multi-NMF Deep Neural Network with Multimodality Data for Breast Cancer Prognosis Model.
    Chen H; Gao M; Zhang Y; Liang W; Zou X
    Biomed Res Int; 2019; 2019():9523719. PubMed ID: 31214619
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous discovery of cancer subtypes and subtype features by molecular data integration.
    Le Van T; van Leeuwen M; Carolina Fierro A; De Maeyer D; Van den Eynden J; Verbeke L; De Raedt L; Marchal K; Nijssen S
    Bioinformatics; 2016 Sep; 32(17):i445-i454. PubMed ID: 27587661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. rPAC: Route based pathway analysis for cohorts of gene expression data sets.
    Joshi P; Basso B; Wang H; Hong SH; Giardina C; Shin DG
    Methods; 2022 Feb; 198():76-87. PubMed ID: 34628030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pan-cancer analysis for studying cancer stage using protein and gene expression data.
    Mishra S; Kaddi CD; Wang MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2440-2443. PubMed ID: 28268818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-linear Bayesian framework to determine the transcriptional effects of cancer-associated genomic aberrations.
    Razi A; Banerjee N; Dimitrova N; Varadan V
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6514-8. PubMed ID: 26737785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Pathway-Based Kernel Boosting Method for Sample Classification Using Genomic Data.
    Zeng L; Yu Z; Zhao H
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31480483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.